News | 3-D Printing | April 18, 2017

3-D-printed Model of Stenotic Intracranial Artery Enables Vessel-Wall MRI Standardization

A 3-D-printed phantom of a stenotic artery is enabling a global collaborative to standardize vessel-wall MRI protocols for intracranial atherosclerotic disease, laying the groundwork for multisite trials of new therapies.

3-D-printed Model of Stenotic Intracranial Artery Enables Vessel-Wall MRI Standardization

April 18, 2017 — A collaboration between stroke neurologists at the Medical University of South Carolina (MUSC) and bioengineers at the University of Massachusetts has led to the creation of a realistic, 3-D-printed phantom of a stenotic intracranial artery. The phantom is being used to standardize protocols for high-resolution magnetic resonance imaging (MRI), also known as vessel-wall MRI, at a network of U.S. and Chinese institutions, according to an article published online by the Journal of NeuroInterventional Surgery.

High-resolution or vessel-wall MRI has been used to study the plaque components in vessels in the brain for more than ten years and has the potential to elucidate the underlying pathology of intracranial atherosclerotic disease (ICAD), the leading cause of stroke worldwide, as well as to gauge patient risk and inform clinical trials of new therapies. However, progress has been stymied by the lack of standardization in high-resolution MRI protocols, which poses an obstacle to multicenter trials.

"There is a lot of exciting research that is possible with high-resolution MRI techniques, but it has much less opportunity to affect patient care if it can't be systematically distributed to multiple sites and multiple populations," said Tanya N. Turan, M.D., director of the MUSC Stroke Division and senior author of the article.

To overcome this obstacle, Turan worked with bioengineers at the University of Massachusetts to produce a phantom of a stenotic intracranial vessel using imaging sequences obtained from a single patient with ICAD at MUSC. The 3-D printed ICAD phantom mimics both the stenotic vessel and its plaque components, including the fibrous cap and the lipid core. The phantom is being shared with collaborating institutions so that it can be used to standardize high-resolution MRI protocols. The imaging data presented in the Journal of NeuroInterventional Surgery article demonstrate the feasibility of using the phantom for standardization and were obtained from six U.S. and two Chinese sites.

Producing the phantom was a major step in the right direction for standardizing high-resolution MRI ICAD protocols. However, several more years may be necessary to complete the process. The next major challenge for these investigators will be establishing parameters for MRI machines from a variety of manufacturers. So far, MRI parameters have been established for Siemens and GE systems but work is still under way on Philips systems.

The phantom is also being shared with sites in China, where the burden of intracranial stenosis is especially high. Turan is collaborating with Weihai Xu, M.D., of Peking Union Medical College, the lead Chinese site, to collect additional data to assess interrater reliability among the participating institutions. Once high-resolution MRI protocols have been standardized and good interrater reliability demonstrated, the international team plans to conduct a prospective observational trial to examine risk prediction at participating centers, which would more quickly meet the required patient enrollment than would a trial conducted in the U.S. alone.

"We're only going to be able to advance the field more quickly if we work together," said Turan. "The phantom gives us the tool to be able to work together."

For more information: www.jnis.bmj.com

Related Content

Toshiba Vantage Galan 3T XGO Edition MRI Features New Advanced Gradient

MRI of the brain performed on the Galan 3T utilizing the 32-channel Head SPEEDER Coil

Technology | Magnetic Resonance Imaging (MRI) | December 11, 2017
Toshiba Medical, a Canon Group company, demonstrated the Vantage Galan 3T XGO Edition with the all-new Saturn X...
Breast Cancer Screening Performance Impacted by Mean Mammographic Compression Pressure
News | Mammography | December 08, 2017
Dutch researchers demonstrated a strong relationship between compression pressure in mammography and breast cancer...
Sponsored Content | Videos | Magnetic Resonance Imaging (MRI) | December 07, 2017
Max Wintermark, M.D., professor of radiology and chief of neuroradiology, Stanford Hospital and Clinics, discussed MR
Sponsored Content | Videos | Advanced Visualization | December 07, 2017
Dianna Bardo M.D., director of body MR and co-director of the 3-D Innovation Lab at Phoenix Children's Hospital.
Brain's Appetite Regulator Disrupted in Obese Teens
News | Neuro Imaging | December 05, 2017
December 5, 2017 — Advanced...
Toshiba Launches Vantage Elan Zen Edition MR for Enhanced Patient Comfort
Technology | Magnetic Resonance Imaging (MRI) | December 05, 2017
Toshiba Medical, a Canon Group company, introduced its newest magnetic resonance (MR) system, the Vantage Elan/Zen...
Philips Azurion Platform Improves Clinical Workflow and Staff Experience Benefits
News | Angiography | December 04, 2017
Philips recently announced the results of a comprehensive, independent, two-year study demonstrating the clinical...
Materialise Partners With Formlabs for Complete 3-D Printing Solution
News | 3-D Printing | December 04, 2017
Materialise and Formlabs are collaborating to deliver a complete, cost-effective and easy-to-use solution for hospitals...
Vital Unveils Newest Vitrea Advanced Visualization Release at RSNA 2017
Technology | Advanced Visualization | December 04, 2017
Vital Images unveiled the newest version of Vitrea Advanced Visualization software, the cornerstone of its imaging...
Numerous Studies Highlight Importance of Quantitative Breast Imaging Analysis at RSNA 2017
News | Breast Density | November 30, 2017
The importance of quantitative analysis in breast imaging was the focus of numerous abstracts accepted for presentation...
Overlay Init