News | Medical 3-D Printing | January 06, 2017

3-D-Printed Kidney Phantoms Aid Nuclear Medicine Dosing Calibration

German research team constructs single-compartment models to demonstrate potential for quantitative SPECT/CT imaging

SPECT-CT, 3-D printing, University of Wurzburg, Germany, Johannes Tran-Gia, dosimetry calibration

SPECT/CT reconstructions and VOIs used for determination of calibration factors for the adult kidney filled with Lu-177 (A) and the corresponding sphere filled with I-131 (B). Credit: University of Würzburg

kidney phantoms, 3-D printing, University of Wurzburg Germany study, Johannes Tran-Gia

Manufactured set of kidney phantoms. From smallest to largest: newborn, 1-y-old, 5-y-old, and adult. Credit: University of Würzburg

January 6, 2017 — In nuclear medicine, the goal is to keep radiation exposure at a minimum, while obtaining quality images. Optimal dosing for individual patients can be difficult to determine. That’s where 3-D-printed organ models of varying size and shape could be of great use.

In a study reported in the December issue of The Journal of Nuclear Medicine, researchers at the University of Würzburg in Würzburg, Germany, demonstrated that low-cost 3-D printing technology can be used for clinical prototyping. Johannes Tran-Gia, Ph.D., the study’s corresponding author, explained, ‟This research shows a way of producing inexpensive models of patient-specific organs/lesions for providing direct and patient-specific calibration constants. This is particularly important for imaging systems suffering from poor spatial resolution and ill-defined quantification, such as SPECT [single photon emission computed tomography]/CT.”

To demonstrate the potential of 3-D printing techniques for quantitative SPECT/CT imaging, kidneys — as organs-at-risk in many radionuclide therapies — were selected for the study.

A set of four one-compartment kidney dosimetry phantoms and their spherical counterparts with filling volumes between 8 mL (newborn) and 123 mL (adult) were designed based on the outer kidney dimensions provided by Medical Internal Radiation Dose (MIRD) guidelines. Based on these designs, refillable, waterproof and chemically stable models were manufactured with a fused deposition modeling 3-D printer. Nuclide-dependent SPECT/CT calibration factors for technetium-99m (Tc-99m), lutetium-177 (Lu-177), and iodine-131 (I-131) were then determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

Tran-Gia noted, ‟Although in our study the kidneys were modeled as a relatively simple one-compartment model, the study represents an important step towards a reliable determination of absorbed doses and, therefore, an individualized patient dosimetry of other critical organs in addition to kidneys.”

Ultimately, affordable 3-D printing techniques hold the potential for manufacturing individualized anthropomorphic phantoms in many nuclear medicine clinical applications.

For more information: www.jnm.snmjournals.org

Related Content

Varian Halcyon Commissioned at MedStar Southern Maryland Hospital Center With IBA's myQA Halo
News | Quality Assurance (QA) | April 04, 2019
IBA (Ion Beam Applications S.A.) announced the successful commissioning of the Varian Halcyon at the Radiation Oncology...
NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
PET Scans Show Biomarkers Could Spare Some Breast Cancer Patients from Chemotherapy
News | PET Imaging | March 18, 2019
A new study positron emission tomography (PET) scans has identified a biomarker that may accurately predict which...
Researchers Create New Method for Developing Cancer Imaging Isotopes

Prototype fluidic system for zirconium-89 purification. Image taken through a hot cell window at the Department of Radiology, University of Washington. Image courtesy of Matthew O’Hara, Pacific Northwest National Laboratory

News | Radiopharmaceuticals and Tracers | March 14, 2019
A team of researchers at the University of Washington announced they developed a new automated system for producing...
Siemens Healthineers Announces First U.S. Install of Biograph Vision PET/CT
News | PET-CT | March 06, 2019
Siemens Healthineers’ new Biograph Vision positron emission tomography/computed tomography (PET/CT) system has been...
Videos | Orthopedic Imaging | March 05, 2019
This is an example of a 3-D printed pelvis that had multiple hip fractures and a second printed pelvis is from a post
Synopsys Releases Simpleware ScanIP Medical Software for 3-D Printing
Technology | Medical 3-D Printing | February 14, 2019
Smart technology company Synopsys recently announced the release of the Synopsys Simpleware ScanIP Medical edition for...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...