News | Medical 3-D Printing | January 06, 2017

3-D-Printed Kidney Phantoms Aid Nuclear Medicine Dosing Calibration

German research team constructs single-compartment models to demonstrate potential for quantitative SPECT/CT imaging

SPECT-CT, 3-D printing, University of Wurzburg, Germany, Johannes Tran-Gia, dosimetry calibration

SPECT/CT reconstructions and VOIs used for determination of calibration factors for the adult kidney filled with Lu-177 (A) and the corresponding sphere filled with I-131 (B). Credit: University of Würzburg

kidney phantoms, 3-D printing, University of Wurzburg Germany study, Johannes Tran-Gia

Manufactured set of kidney phantoms. From smallest to largest: newborn, 1-y-old, 5-y-old, and adult. Credit: University of Würzburg

January 6, 2017 — In nuclear medicine, the goal is to keep radiation exposure at a minimum, while obtaining quality images. Optimal dosing for individual patients can be difficult to determine. That’s where 3-D-printed organ models of varying size and shape could be of great use.

In a study reported in the December issue of The Journal of Nuclear Medicine, researchers at the University of Würzburg in Würzburg, Germany, demonstrated that low-cost 3-D printing technology can be used for clinical prototyping. Johannes Tran-Gia, Ph.D., the study’s corresponding author, explained, ‟This research shows a way of producing inexpensive models of patient-specific organs/lesions for providing direct and patient-specific calibration constants. This is particularly important for imaging systems suffering from poor spatial resolution and ill-defined quantification, such as SPECT [single photon emission computed tomography]/CT.”

To demonstrate the potential of 3-D printing techniques for quantitative SPECT/CT imaging, kidneys — as organs-at-risk in many radionuclide therapies — were selected for the study.

A set of four one-compartment kidney dosimetry phantoms and their spherical counterparts with filling volumes between 8 mL (newborn) and 123 mL (adult) were designed based on the outer kidney dimensions provided by Medical Internal Radiation Dose (MIRD) guidelines. Based on these designs, refillable, waterproof and chemically stable models were manufactured with a fused deposition modeling 3-D printer. Nuclide-dependent SPECT/CT calibration factors for technetium-99m (Tc-99m), lutetium-177 (Lu-177), and iodine-131 (I-131) were then determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

Tran-Gia noted, ‟Although in our study the kidneys were modeled as a relatively simple one-compartment model, the study represents an important step towards a reliable determination of absorbed doses and, therefore, an individualized patient dosimetry of other critical organs in addition to kidneys.”

Ultimately, affordable 3-D printing techniques hold the potential for manufacturing individualized anthropomorphic phantoms in many nuclear medicine clinical applications.

For more information: www.jnm.snmjournals.org

Related Content

 “Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020” that describes close to 1,500 medical cyclotrons worldwide
News | Nuclear Imaging | March 10, 2020
March 10, 2020 — MEDraysintell released its new and unique report “...
Potassium Molybdate Mo 99 Source Vessels for RadioGenix System

Potassium Molybdate Mo 99 Source Vessels for RadioGenix System (Photo: Business Wire)

News | Radiopharmaceuticals and Tracers | February 18, 2020
February 18, 2020 — NorthStar Medical Radioisotopes, LLC, a
SIR-Spheres Y-90 resin

SIR-Spheres Y-90 resin microspheres are released into the hepatic artery.

News | Nuclear Imaging | February 14, 2020
February 14, 2020 —  ...
Nuclear imaging equipment growth in 2020
News | Nuclear Imaging | February 14, 2020
February 14, 2020 — The nuclear imaging equipment
A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast

A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast. (A) Unenhanced fat-saturated T1-weighted MRI shows extreme amount of FGT (ACR d). (B) Moderate BPE is seen on dynamic contrast-enhanced MRI at 90 s. (C) Mean ADC of breast parenchyma of contralateral breast on diffusion-weighted imaging with ADC mapping is 1.5 × 10?3 mm2/s. (D) On 18F-FDG PET/CT, lesion is not 18F-FDG-avid, and BPU of normal breast parenchyma is relatively high, with SUVmax of 3.2. Photo courtesy of K Pinker, et al., Medical University of Vienna, Vienna, Austria

News | PET-MRI | January 27, 2020
January 27, 2020 — Researchers have identified several potentially useful...
Nuclear imaging of the spine shown on Philips Healthcare BrightView XCT

Image courtesy of Philips Healthcare

News | Nuclear Imaging | January 27, 2020
January 27, 2020 — According to the new market research report "...
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Videos | RSNA | January 13, 2020
ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the
Feinstein Institutes' Thomas Chaly, Ph.D., poses in front of a PET-CT imaging machine. He has been instrumental in pushing for FDA approval of a new PET imaging agent, Fluorodopa F-18 (FDOPA), to combat Parkinson’s

Feinstein Institutes' Thomas Chaly, Ph.D., in front of a PET-CT imaging machine. He has been instrumental in pushing for FDA approval of a new PET imaging agent, Fluorodopa F-18 (FDOPA), to combat Parkinson’s

News | Nuclear Imaging | December 26, 2019
December 26, 2019 — The Feinstein Institutes for Medical R...