News | 3-D Printing | January 06, 2017

3-D-Printed Kidney Phantoms Aid Nuclear Medicine Dosing Calibration

German research team constructs single-compartment models to demonstrate potential for quantitative SPECT/CT imaging

SPECT-CT, 3-D printing, University of Wurzburg, Germany, Johannes Tran-Gia, dosimetry calibration

SPECT/CT reconstructions and VOIs used for determination of calibration factors for the adult kidney filled with Lu-177 (A) and the corresponding sphere filled with I-131 (B). Credit: University of Würzburg

kidney phantoms, 3-D printing, University of Wurzburg Germany study, Johannes Tran-Gia

Manufactured set of kidney phantoms. From smallest to largest: newborn, 1-y-old, 5-y-old, and adult. Credit: University of Würzburg

January 6, 2017 — In nuclear medicine, the goal is to keep radiation exposure at a minimum, while obtaining quality images. Optimal dosing for individual patients can be difficult to determine. That’s where 3-D-printed organ models of varying size and shape could be of great use.

In a study reported in the December issue of The Journal of Nuclear Medicine, researchers at the University of Würzburg in Würzburg, Germany, demonstrated that low-cost 3-D printing technology can be used for clinical prototyping. Johannes Tran-Gia, Ph.D., the study’s corresponding author, explained, ‟This research shows a way of producing inexpensive models of patient-specific organs/lesions for providing direct and patient-specific calibration constants. This is particularly important for imaging systems suffering from poor spatial resolution and ill-defined quantification, such as SPECT [single photon emission computed tomography]/CT.”

To demonstrate the potential of 3-D printing techniques for quantitative SPECT/CT imaging, kidneys — as organs-at-risk in many radionuclide therapies — were selected for the study.

A set of four one-compartment kidney dosimetry phantoms and their spherical counterparts with filling volumes between 8 mL (newborn) and 123 mL (adult) were designed based on the outer kidney dimensions provided by Medical Internal Radiation Dose (MIRD) guidelines. Based on these designs, refillable, waterproof and chemically stable models were manufactured with a fused deposition modeling 3-D printer. Nuclide-dependent SPECT/CT calibration factors for technetium-99m (Tc-99m), lutetium-177 (Lu-177), and iodine-131 (I-131) were then determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

Tran-Gia noted, ‟Although in our study the kidneys were modeled as a relatively simple one-compartment model, the study represents an important step towards a reliable determination of absorbed doses and, therefore, an individualized patient dosimetry of other critical organs in addition to kidneys.”

Ultimately, affordable 3-D printing techniques hold the potential for manufacturing individualized anthropomorphic phantoms in many nuclear medicine clinical applications.

For more information: www.jnm.snmjournals.org

Related Content

IBA Dosimetry Americas Announces New Exclusive Canadian Distributor for Radiotherapy Products
News | Radiation Therapy | April 28, 2017
April 28, 2017 — IBA (Ion Beam Applications S.A.) announced the Dosimetry Americas division has recently partnered wi
Australian Team Finds New Method for Producing PET Radiotracers in Higher Radiochemical Yields
News | Radiopharmaceuticals and Tracers | April 28, 2017
April 28, 2017 — Researchers at the Australian Nuclear Science and Technology Organisation (ANSTO) have led the devel
Sponsored Content | Videos | Nuclear Imaging | April 28, 2017
David Wolinsky, M.D., director of nuclear cardiology at Cleveland Clinic Florida and past-president of the American S
News | Prostate Cancer | April 24, 2017
April 24, 2017 — Cancer Targeted Technology recently announced it is focusing on small molecules that target pivotal
SPECT/CT Imaging Test Shown Accurate in Ruling Out Kidney Cancers
News | SPECT Imaging | April 24, 2017
The latest in a series of studies led by researchers at Johns Hopkins Medicine shows that addition of a widely...
3-D-printed Model of Stenotic Intracranial Artery Enables Vessel-Wall MRI Standardization
News | 3-D Printing | April 18, 2017
April 18, 2017 — A collaboration between stroke neurologists at the Medical University of South Carolina (MUSC) and b
3-D Prints Compare Effectiveness of Top Surgical Techniques for Repairing Heel Deformity
News | 3-D Printing | April 18, 2017
Using 3-D models of a patient’s foot, investigators at Cedars-Sinai have found that the three leading procedures for...
University of Missouri Research Reactor Files to Start U.S. Production of Medical Isotopes
News | Radiopharmaceuticals and Tracers | April 13, 2017
The University of Missouri Research Reactor (MURR) and its partners Nordion and General Atomics (GA), announced in...
IBA Molecular and Mallinckrodt Nuclear Medicine Merge to Become Curium
News | Radiopharmaceuticals and Tracers | April 11, 2017
IBA Molecular announced that it has merged with previous acquisition Mallinckrodt Nuclear Medicine LLC to form the new...
FDG-PET, cell mutations, lung cancer patients, non-small cell lung cancer, NSCLC, Journal of Nuclear Medicine study

From left to right are patients with EGFR mutation, KRAS mutation, and EGFR– and KRAS– tumors, respectively. Stage I and III tumors are shown in the top and bottom rows, respectively. Arrows indicate the locations of the lung tumors. Credit: Stephen S.F. Yip, Ph.D., and Hugo Aerts, Ph.D., Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Harvard Medical School, Boston; John Kim, M.D., University of Michigan Health System, Ann Arbor, Mich.

News | PET Imaging | April 05, 2017
Researchers have used positron emission tomography (PET) to successfully identify genetic cell mutations that can cause...
Overlay Init