Feature | March 27, 2014

Three Dimensional MRI Scans May Offer Better Way to Predict Survival After Chemo for Liver Tumors

3-D MRI Scans Survival After Chemo Liver Tumors Johns Hopkins

March 27, 2014 — In a series of studies involving 140 American men and women with liver tumors, researchers at Johns Hopkins have used specialized 3-D magnetic resonance imaging (MRI) scans to precisely measure living and dying tumor tissue to quickly show whether highly toxic chemotherapy — delivered directly through a tumor's blood supply — is working.

The investigators say their findings, presented March 22-27 in San Diego at the annual meeting of the Society of Interventional Radiology, are the first "proof of principle" that this technology can show tumors in three dimensions and accurately measure tumor viability and death. Early data was also presented at the Radiological Society of North America (RSNA) annual meeting, Dec. 1-6, 2013 in Chicago.

They also say their results — in patients with either primary liver cancers or metastatic tumors from cancers originating elsewhere in the body — are evidence that using this technology before and after treatment is a faster and better tool for predicting patient survival after chemotherapy targeted directly at tumors, called chemoembolization.

Unlike standard methods to assess tumor response after chemoembolization, which are based on two-dimensional images and tumor size, the Johns Hopkins-developed 3-D technology also distinguishes between dead and live tissue, giving an accurate assessment of tumor cell death.

The new technology builds on standard 2-D methods and uses computer analytics to evaluate the amount of so-called contrast dye absorbed by tumor tissue. The dye is injected into patients before their MRI scan to enhance image production. Researchers say live tissue will absorb more dye than dead tissue, affecting image brightness, which can also be measured for size and intensity.

"Our high-precision, 3-D images of tumors provide better information to patients about whether chemoembolization has started to kill their tumors so that physicians can make more well-informed treatment recommendations," says Johns Hopkins interventional radiologist Jean-Francois Geschwind, M.D., senior investigator on the studies.

Geschwind, a professor in the Russell H. Morgan Department of Radiology at the Johns Hopkins University School of Medicine and its Kimmel Cancer Center, said that knowing the true extent of a tumor's response to chemoembolization is particularly important for patients with moderate to advanced stages of the disease, whose liver tumors might initially be too large or too numerous to surgically remove.

In the first study, researchers compared the standard imaging method and the newly developed technology in 17 Baltimore men and women with advanced liver cancer. All were treated with surgery or liver transplantation after chemoembolization. The research team used existing MR analysis techniques, as well as the new 3-D method to compare the radiologists' analyses with pathologic review of tumor samples after therapy and surgical removal. The error margin of the new 3-D image analysis, they say, was low (at up to 10 percent) when predicting the amount of dead tumor tissue found by pathologists whereas the standard, 2-D method deviated by as much as 40 percent from actual values.

In a series of additional studies, Geschwind and his team used the standard and new imaging techniques to analyze the MRI scans of more than 300 liver tumors in some 123 other men and women, also from the Baltimore region. All patients were treated at The Johns Hopkins Hospital between 2003 and 2012, and each received pre- and post-chemoembolization MRI scans to assess the effects of therapy on the tumors.

Using the new 3-D method method, Geschwind's team found that patients who responded well to therapy lived 19 months longer (an average of 42 months) than patients who did not respond well (average 23 month survival). Standard methods showed slightly less difference in survival (average 18 months longer) between patients who responded to therapy and those who did not respond.

Geschwind said the 3-D technology's improved accuracy removes a lot of the guesswork that now goes into evaluating treatment outcomes. The new assessment takes seconds to perform, he adds, so radiologists can provide faster, almost instantaneous treatment advice.

Geschwind and his team plan further software refinements to the new approach before training more physicians to use it. He also has plans to study how it can affect treatment decisions, and whether these therapy choices help people live longer.

The software used in the MRI scans was developed at Johns Hopkins and at Philips Research North America, in Briarcliff Manor, N.Y. Philips, whose parent company is based in the Netherlands, manufactures some of the MRI devices used in the study.

Liver cancer kills nearly 20,000 Americans each year, and is much more prevalent outside the United States, where it is among the top-three causes of cancer death in the world. Experts cite the rising numbers of hepatitis C infections, which cause chronic liver inflammation and are a leading risk factor for liver cancer.

For additional information: www.sirmeeting.org, www.hopkinsmedicine.org/vascular/staff/physicians/geschwind.html, www.hopkinsmedicine.org/vascular/procedures/chemoembolization/

Related Content

MedStar Georgetown Proton Center Selects RayStation for Treatment Planning
News | Treatment Planning | August 17, 2017
August 17, 2017 — The proton center at MedStar Georgetown University Hospital will utilize RayStation for planning on
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream dose management
Sponsored Content | Whitepapers | Advanced Visualization | August 17, 2017
It's critical for today's healthcare professionals to understand the balance between the risks and benefits of any X-...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
DOSIsoft Releases ISOgray Proton Therapy Treatment Planning System
Technology | Treatment Planning | August 15, 2017
DOSIsoft SA announced the official release, with CE marking, of ISOgray Treatment Planning System (TPS) release 4.3 for...
CDN to Integrate Advanced Cardiac Imaging Tools From DiA Imaging Analysis
Technology | Advanced Visualization | August 10, 2017
August 10, 2017 — CDN recently announced a new partnership agreement with DiA Imaging Analysis Ltd., makers of next-g
First Radixact Results Presented at AAPM 2017
News | Radiation Therapy | August 10, 2017
Accuray Inc. announced that the first studies validating the benefits of the Radixact System were presented at the 59th...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
Overlay Init