Feature | March 21, 2011

Tests on 105-Year-Old X-Ray Shows How Far Technology Advanced

A comparison of an X-ray of a hand using 1896 technology (left) and a modern digital radiography X-ray system.

 

Researchers recently tested first-generation X-ray equipment from 1896 and found it produced radiation doses and exposure times that were vastly higher than those of today’s systems, according to a study published online and in the May print edition of Radiology.

“To my knowledge, nobody had ever done systematic measurements on this equipment, since by the time one had the tools, these systems had been replaced by more sophisticated ones,” said the study’s lead author, Gerrit J. Kemerink, Ph.D., from Maastricht University Medical Center in the Netherlands.

Wilhelm Roentgen reported his discovery of X-rays on Dec. 28, 1895. A few weeks later, H.J. Hoffmans, a physicist and high school director in Maastricht, the Netherlands, and L.T. van Kleef, M.D., director of a local hospital, performed anatomical imaging experiments with an X-ray system built from equipment at Hoffmans’ high school. Key elements of the system included a high-voltage transformer and a glass bulb with metal electrodes at each end.

Technology advanced rapidly, and the setup used by Hoffmans and Dr. van Kleef soon became obsolete. Eventually, the equipment ended up collecting dust in a Maastricht warehouse. A year ago, Jos M.A. van Engelshoven, M.D., Ph.D., former radiology head at the Maastricht University Medical Center, retrieved the equipment, most of which was still in working order, for a television program on the history of healthcare in the region. Kemerink then decided to analyze the setup in more detail.

The Maastricht researchers repeated some of the first imaging exams, using the equipment to image a hand specimen from a body that had been donated to science.

“We sometimes worked in a fully dark room that had black walls, with the only light coming from the flashing tube and from discharges in the spark gap,” Kemerink said. “Together with the irregular buzz of the interrupter and the crackling sound of the discharges, this created a very special, kind of ghostly, ambiance.”

The researchers compared the radiation dose, X-ray beam properties and electrical characteristics of the 1896 system with those from a modern X-ray system. Using the same exposure conditions used in 1896, the estimated skin dose needed to image the hand was nearly 1,500 times greater on the first-generation system than on the modern system — 74 milligrays (mGy) and 0.05 mGy, respectively. Corresponding exposure times were 90 minutes for the old system and 21 milliseconds for the modern system.

Pinhole images showed the X-rays originated from an extended area of the glass wall in the system’s construction, causing image blurring. Still, the 114-year-old system produced what Kemerink described as surprisingly good images in which anatomical details were clearly visible.

The high radiation doses and long exposures times of early X-ray equipment caused significant health problems for the technology’s pioneers. Adverse effects, such as eye complaints, skin burns and loss of hair, were reported within weeks of Roentgen’s discovery.

“Many operators of the early X-ray systems experienced severe damage to hands over time, often necessitating amputations or other surgery,” Kemerink said.

X-ray technology improved rapidly in the 20th century, with significantly lower radiation dose and exposure time and improved image quality, making it a convenient and safe imaging modality and an invaluable diagnostic tool.

Reference: Collaborating with Drs. Kemerink and van Engelshoven were Martijn Kemerink, Ph.D., Tom J. Dierichs, B.S., Julien Dierichs, B.S., Hubert J.M. Huynen, and Joachim E. Wildberger, M.D., Ph.D. “Characteristics of a First-Generation X-Ray System.” Radiology. March, 2011

For more information: http://radiology.rsna.org

Related Content

Sponsored Content | Videos | Digital Radiography (DR) | November 12, 2018
VIVIX-S 1417N is a multi-purpose portable flat panel detector for addressing busy workflow in medical facilities.
ContextVision Introduces AI-Powered Image Enhancement for Digital Radiography
Technology | Artificial Intelligence | November 09, 2018
With the integration of deep learning technology, ContextVision takes digital radiography to new levels with its latest...
Konica Minolta Provides New Insights with AeroRemote Insights
News | Digital Radiography (DR) | November 01, 2018
At the 2018 Radiological Society of North America (RSNA) annual meeting, Nov. 25-30 in Chicago, Konica Minolta...
Carestream Digital X-ray System Deployed at Remote Antarctic Station
News | Digital Radiography (DR) | October 10, 2018
Carestream is providing a DRX-Transportable System/Lite for the Italian-French Concordia scientific station in...
VCU Health Upgrades 18 Digital X-ray Systems With Carestream
News | Digital Radiography (DR) | September 28, 2018
VCU (Virginia Commonwealth University) Medical Center recently upgraded 18 Carestream digital X-ray systems that...
Agfa Brings Intelligent Radiography to RSNA 2018
News | Digital Radiography (DR) | September 17, 2018
September 17, 2018 — At the 2018 Radiological Society of North America (RSNA) annual meeting, Nov.
The DRX-Transportable System/Lite
News | X-Ray | September 12, 2018
Columbus Regional Health (Columbus, Ind.) has deployed a Carestream ...
Mount Sinai Serves as Official Medical Services Provider for 2018 U.S. Open
News | Orthopedic Imaging | September 06, 2018
For the sixth consecutive year, Mount Sinai will serve as the official medical services provider for the 2018 U.S. Open...
Scientists Advance Technique for Developing Novel Light Beams from Synchrotron Radiation
News | X-Ray | August 28, 2018
August 28, 2018 — A new study has demonstrated a method that produces novel light beams from synchrotron light source
RSNA Announces Pneumonia Detection Machine Learning Challenge
News | Artificial Intelligence | August 27, 2018
The Radiological Society of North America (RSNA) has launched its second annual machine learning challenge. The RSNA...