Feature | June 17, 2013

SPECT/MR Molecular Imaging System Makes Its Debut

High resolution, low dose imaging modality could diversify options for clinicians

The Society of Nuclear Medicine and Molecular Imaging’s 2013 Annual Meeting marks the unveiling of the successful application of a new preclinical hybrid molecular imaging system—single photon emission tomography and magnetic resonance (SPECT/MR)—which has exceptional molecular imaging capabilities in terms of potential preclinical and clinical applications, technological advancement at a lower cost, and reduction of patient exposure to ionizing radiation.

“We are pioneering simultaneous SPECT and MR imaging technologies now demonstrated in preliminary small animal studies,” said Benjamin M.W. Tsui, Ph.D., director of the division of medical imaging physics in the department of radiology, and a professor of radiology, electrical and computer, biomedical engineering, and environmental health sciences at Johns Hopkins University in Baltimore, Md. “We have been building the technology with our industrial partner, TriFoil Imaging—formerly the preclinical business of Gamma Medica, Inc.—for the past five years and have sufficient data now to show that it works. This presents a unique multimodality system that images mice down to a spatial resolution of less than1 mm at high detection efficiency.”

SPECT/MR represents a completely different imaging modality from other hybrid systems like positron emission tomography and computed tomography (PET/CT) and simultaneous PET and magnetic resonance (PET/MR) by allowing hybrid imaging with biomarkers labeled with a wide range of radionuclides. SPECT/MR has a variety of potential applications, including but not limited to imaging for cancer, cardiovascular and neurological diseases, thyroid and other endocrine disorders, trauma, inflammation and infection.

To construct a SPECT insert that works in the magnetic field of an MR system, the developers integrated 16 x 16 pixel and 1.6 mm pixel pitch cadmium zinc telluride (CZT) solid-state detectors that directly convert incoming photons into electrical signals that are not affected by the static magnetic field. The SPECT insert also houses a state-of-the-art “multi-pinhole” collimator that provides both high spatial resolution and capacity for the detection of photons from small animals injected with available or novel nuclear medicine biomarkers that use radionuclides to convey physiological functions of the body. Unlike PET, SPECT has the added bonus of being able to detect photons of different energies from multiple radionuclide-labeled biomarkers for fully customized and application-specific multifunctional imaging.

Other major benefits of the SPECT/MR system include the elimination of the radiation dose associated with CT and the much lower cost of building the technology compared to PET/MR, which cost about $5.5 million for a clinical system. Tsui remarks, though, that the technology is meant not to supplant other technologies but rather to further diversify options for biomedical investigators and clinicians to optimize research and patient care. SPECT/MR could roll out into human trials in the not-too-distant future. “We are confident that with sufficient funding we can build a SPECT/MR system for human brain studies in about two years and begin clinical studies by the third year,” Tsui estimated.

Scientific Paper 595: Benjamin Tsui, Jingyan Xu, Andrew Rittenbach, Abdel-Monem El-Sharkawy, William Edelstein, Department of Radiology, Johns Hopkins University, Baltimore, MD; Kevin Parnham, James Hugg, Gamma Medica, Northridge, CA, “A completed SPECT/MR insert for simultaneous SPECT/MR imaging of small animals,” SNMMI’s 60th Annual Meeting, June 8–12, 2013, Vancouver, British Columbia.

For more information: www.snmmi.org

Related Content

GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...
MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
A PET/CT head and neck cancer scan.

A PET/CT head and neck cancer scan.

Feature | Nuclear Imaging | November 05, 2018 | By Sabyasachi Ghosh
“Experimental validation implemented in real-life situations and not theoretical claims exaggerating small advantages
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
CORAR Supports Medicare Diagnostic Radiopharmaceutical Payment Equity Act of 2018
News | Radiopharmaceuticals and Tracers | October 12, 2018
October 12, 2018 — The Council on Radionuclides and Radiopharmaceuticals Inc.