Feature | May 05, 2010 | Cristen C. Bolan

RT Workflow Solutions for Busy Clinics

Whiteboards and vendor-neutral connectivity help streamline radiation therapy workflow.

The Dosimetry-Summary board on Standard Imagings RT Workflow provides a snapshot of where a patient is in the planning process.

There is minimal disruption to workflow in Tomotherapys CT simulation process.

Perhaps there is no other area of medicine that requires as much of a team effort to deliver treatment as radiation oncology.
Throughout the entire radiation therapy (RT) process — from patient entry to plan approval to plan finalization — all of the clinicians involved must continuously work together. Any break in the workflow can result in delays in treatment, errors or costly repetition of work.
Whiteboard Solution
In a busy radiation oncology clinic, workflow can be improved through better communication and reduced waste.
One new workflow solution, RT Workspace, developed by Standard Imaging, is designed to improve efficiency. It features automatic notifications to alert each provider when a task requires his or her attention. Instructions and data appear on electronic whiteboards, which provide a snapshot of where a patient is in the planning process. When a process is finished, the professional assigned the next task is notified immediately. Allowing each stakeholder to reference the whiteboard once a task is completed may help prevent interruptions.
To maintain communication throughout the process, users place electronic sticky notes on the RT Workspace desktop, check a “to do list,” or view a scheduling calendar. For more detailed instructions, a secure e-mail system is available.
RT Workspace supports lean management techniques designed to eliminate waste and increase efficiency. Detailed information about the time it takes to complete each step in the patient planning process allows clinicians to identify where improvements are needed the most.
There also are specialized boards for low-dose rate brachytherapy and radiosurgery to plan processes. On the whiteboard, physicists can collect, organize and analyze machine quality assurance (QA) and patient specific QA information.
By minimizing delays, omissions and errors during the entire radiotherapy process, both patient satisfaction and departmental resource utilization are maximized.
System Integration
Like most high-volume clinics, there comes a time to grow the business by expanding treatment options. This often requires installing a new linear accelerator (linac). Integrating a new system, however, can create bottlenecks and down time. It is important to look at both the linac and the supporting information technology (IT) infrastructure to assure a smooth transition.
The new linac should be capable of receiving information from a wide range of systems and software solutions. For example, one leading system, Hi-Art by Tomotherapy, is engineered to integrate fully into the radiation oncology department.
A linac should be standards based, using the digital imaging and communications in medicine (DICOM) protocol for images. Retrieving DICOM images enables clinicians to use its existing equipment, such as a computed tomography (CT) simulator and contouring solution. Notably, the first step in the routine Tomotherapy planning process is bringing a kilovoltage (kV) planning CT image set, along with target structures, into the linac system via DICOM import.
A single database unifies each step of the workflow. It connects treatment planning, optimization, image guidance, treatment delivery, record and verify, and the adaptation of plans.
The planning workstation, operator console, treatment unit itself, and a computing cluster are each directly connected to the database. Because treatment plans are saved to this central database, no operator controlled transfer of treatment delivery data is necessary. This minimizes the risk of data corruption and loss.
Once Tomotherapy treatment plans have been created for patients, clinicians can save it to a picture archiving and communication system (PACS) or radiation therapy PACS (RT-PACS). All of the image data – either the kV planning CT or the daily multivoltage CT images – can be stored. A clinician may want to export data for a clinical trial, such as to the Radiation Therapy Oncology Group (RTOG). The DICOM export option provides this capability. It allows users to export CT images as well as the RT-specific objects of a structure set, plan and dose.
Integrate Existing and Emerging Technologies
Open source and standards-based software allow clinics to purchase new technology and interface with existing equipment.
City of Hope, a research and treatment center for cancer and other diseases in Duarte, Calif., has used Mosaiq, an oncology information management system (OIMS), since 1999. When the center upgraded Mosaiq in September of 2009, the software’s open-source architecture allowed the OIMS to interface with two existing Tomotherapy Hi-Art systems.
“Essentially, the Mosaiq and Hi-Art interface aims to improve patient safety and overall workflow. It aids in plan selection on the Hi-Art system and streamlines our department’s efficiency by recording delivered treatments and charges,” said Jeffrey Wong, M.D., chairman, department of radiation oncology.
He added, “The interface now allows us to schedule patient treatments for the Hi-Art in Mosaiq and transfer and record treatment delivery information from the Hi-Art in the Mosaiq patient chart. It further facilitates tracking the patient’s accumulated dose and capture charges based on details exported from the treatment machine.”
These vendor-neutral solutions, using standards-based protocols and open source IT, are critical for integrating disparate systems and streamlining the entire workflow.

Related Content

ScImage Awarded U.S. Government DIN-PACS IV Contract
News | PACS | August 16, 2017
ScImage Inc. was recently awarded a new DIN-PACS IV (Digital Imaging Network/Picture Archiving and Communications...
Neighbors Emergency Center Selects Novarad PACS/RIS
News | PACS | August 15, 2017
August 15, 2017 — Novarad Corp.
Fujifilm Launches Synapse PACS Version 5
Technology | PACS | August 03, 2017
August 3, 2017 – Fujifilm Medical Systems U.S.A. Inc.
The ASPIRE Cristalle FFDM system with DBT combines Fujifilm’s state-of-the-art hexagonal close pattern (HCP) detector design, advanced image processing and image acquisition workflow
News | Women's Health | August 01, 2017
Fujifilm Medical Systems U.S.A., Inc. announced that The Mammography Center of Monterey, an ACR-accredited breast...
Accuray Receives 510(k) Clearance for iDMS Data Management System
Technology | Oncology Information Management Systems (OIMS) | July 31, 2017
July 31, 2017 — Accuray Inc. announced it has received 510(k) clearance from the U.S.
RamSoft has teamed up with Availity to bring healthcare providers Patient Access and Patient Authorizations
News | PACS | July 31, 2017
RamSoft has teamed up with Availity to bring healthcare providers Patient Access and Patient Authorizations, two fully...
more healthcare providers and patients are choosing options such as Gamma Knife stereotactic radiosurgery
News | Radiation Therapy | July 31, 2017
Each year, up to 650,000 people who were previously diagnosed with various forms of cancer will develop brain...
Agfa Receives FDA 510(k) for Xtend Functionalities on Xero Universal Viewer
Technology | Remote Viewing Systems | July 27, 2017
Agfa HealthCare announced it has received U.S. Food and Drug Administration (FDA) 510(k) clearance for the Xero Xtend...
Elekta’s MR-linac integrates an advanced linear accelerator and a 1.5T magnetic resonance imaging (MRI) system

Elekta’s MR-linac integrates an advanced linear accelerator and a 1.5T magnetic resonance imaging (MRI) system. Combined, these systems will allow for simultaneous radiation therapy delivery and high-field MR tumor monitoring.

Feature | Radiation Oncology | July 05, 2017 | By Jeff Zagoudis
Image-guided radiation therapy offers great potential to improve the efficiency of treating cancer patients by more...

Photo courtesy of RaySearch

Feature | Treatment Planning | July 05, 2017 | By Jeff Zagoudis
While radiation oncologists have a number of proven techniques at their disposal for treating patients, the reality is...
Overlay Init