Feature | Medical 3-D Printing | February 03, 2021

Materialise’s 3-D printing and surgical planning tools provided increased speed and accuracy during the procedure

Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.


Three-dimensional technologies, developed by Materialise, played a crucial role in the world’s first simultaneous double hand and face transplant that was successfully performed at NYU Langone Health in Manhattan. Materialise’s innovative 3-D planning and printing tools enable the speed and accuracy required for such a complex medical procedure. Three-dimensional printed personalized tools such as those used in the double hand and face transplant are also increasingly common for use in routine surgery, providing surgeons with an additional level of confidence which results in improved patient outcome.

The 22-year old patient suffered burn wounds resulting from a car accident, leaving him with severe injuries to his face and both arms. He suffered significant damage to his soft tissue, which severely limited his ability to lead a normal life. During a preparation period of 14 months, Materialise clinical engineers formed a cohesive team alongside NYU Langone surgeons, rehearsing the operation in a lab environment to develop and fine-tune the surgical plan. Once a suitable donor was found, the team, led by Eduardo D. Rodriguez, M.D., the Helen L. Kimmel Professor of Reconstructive Plastic Surgery and chair of the Hansjörg Wyss Department of Plastic Surgery at NYU Langone, had only 24 hours to begin the procedure that would improve the patient’s function, appearance and quality of life.

CT Scans Aid Surgical Plan With On-screen 3-D modeling 

In the months leading up to the surgery Materialise engineers coordinated the development of a surgical plan and created an on-screen 3-D model based on computed tomography (CT) scans. This allowed the surgeons and clinical engineers to virtually plan the procedure and visualize different scenarios in three dimensions, creating an in-depth understanding of the anatomical bone structure and determining the optimal surgical flow. Pre-surgical planning also made it possible for surgeons to virtually select and position various medical implants to predict the optimal anatomical fit. Once the surgical plan was finalized, Materialise 3-D printed the personalized surgical guides, anatomical models and tools for use during the transplant surgery.

CT Scans Used to Create 3-D Printed Cutting and Drilling Guides

During this momentous procedure, Rodriguez and his surgical team of sixteen used Materialise’s 3-D printed cutting and drilling guides. This fully guided system for bone fragment repositioning and fixation was unique to the patient’s anatomy and helped position the medical tools with great precision, reducing the overall surgery time. Additionally, Materialise created 3-D printed sterilizable identification tags for nerves and blood vessels, 3-D printed models that were used during donor transport, and 3-D printed splints, enabling optimal donor hand position during soft tissue reconstruction.

“Complex transplant surgery like this brings together a large team of specialists and presents new and unique challenges”, said Rodriguez. “This demands careful planning and makes timing, efficiency and accuracy absolutely critical. Virtually planning the surgery in 3-D and creating 3-D printed, patient-specific tools offers additional insights in the pre-operative phase and increased levels of speed and accuracy during a time-critical surgery”.

Image-based Planning and 3-D Printing is Revolutionizing Personalized Medicine

“Image-based planning and medical 3-D printing have completely revolutionized personalized patient care by providing surgeons with detailed insights and an additional level of confidence before entering the operation room,” says Bryan Crutchfield, Vice President and General Manager – North America. “As a result, leading hospitals are adopting 3D planning and printing services as part of their medical practices because they create a level of predictability that would be impossible to achieve without the use of 3-D technologies.”

Materialise has pioneered many leading medical applications of 3-D printing and enables researchers, engineers, and clinicians to develop innovative, personalized treatments that help improve and save lives. The Materialise platform of software and services forms the foundation of certified medical 3D printing in clinical and research environments, offering virtual planning software tools, 3D-printed anatomical models, and personalized surgical guides and implants. 

For more information: www.materialise.com

Medical 3-D Printing Related Content:

Researchers Use 3-D Printing to Guide Human Face Transplants

Integrated 3-D Imaging Facilitates Human Face Transplantation

Blood Vessels Reorganize After Face Transplantation Surgery

3-D Printing and Computer Aided Design Aids Structural Heart Interventions

RSNA and ACR to Collaborate on Landmark Medical 3D Printing Registry

VIDEO: Collection of 3-D Printed Patient Hearts at Henry Ford Hospital

3-D printed Heart Models Displayed by Vital Images

Nemours Children's Health System Uses 3-D Printing to Deliver Personalized Care

VIDEO: Applications in Cardiology for 3-D Printing and Computer Aided Design


Related Content

News | Artificial Intelligence

December 2, 2022 — emtelligent, a leader in the development of clinical-grade natural language processing (NLP) software ...

Time December 02, 2022
arrow
News | Artificial Intelligence

December 1, 2022 — VIDA Diagnostics, Inc. (VIDA), the leader in imaging intelligence, has announced the availability of ...

Time December 01, 2022
arrow
News | Artificial Intelligence

December 1, 2022 — Annalise.ai and Nuance announced that the global medical imaging AI company has joined the Nuance ...

Time December 01, 2022
arrow
News | Artificial Intelligence

December 1, 2022 — At the 2022 Radiological Society of North America (RSNA) Annual Meeting, Peter R. Eby, MD, of ...

Time December 01, 2022
arrow
Feature | RSNA | Christine Book

November 30, 2022 — On the fourth day of RSNA 2022, inside Chicago’s McCormick Place, an estimated 260 separate events ...

Time December 01, 2022
arrow
News | Artificial Intelligence

November 30, 2022 — Ziosoft, a pioneer in 3D/4D AI medical visualization, is introducing its newest software for its ...

Time November 30, 2022
arrow
News | Computed Tomography (CT)

November 30, 2022 — Using a decade of weather and CT imaging data, researchers have identified specific weather ...

Time November 30, 2022
arrow
News | Ultrasound Imaging

November 29, 2022 — Samsung Electronics Co. Ltd. will be unveiling its latest artificial intelligence (AI) technologies ...

Time November 29, 2022
arrow
News | PACS

November 28, 2022 — At this week’s Radiological Society of North America (RSNA) annual meeting (November 27 – December 1 ...

Time November 28, 2022
arrow
News | Artificial Intelligence

November 28, 2022 — Carestream Health will demonstrate the value and impact of artificial intelligence (AI) in radiology ...

Time November 28, 2022
arrow
Subscribe Now