Feature | Medical 3-D Printing | February 03, 2021

The Role of 3-D Technology in World’s First Successful Double Hand and Face Transplant

Materialise’s 3-D printing and surgical planning tools provided increased speed and accuracy during the procedure

Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

During a preparation period of 14 months, Materialise clinical engineers formed a cohesive team alongside NYU Langone surgeons, rehearsing the operation in a lab environment to develop and fine-tune the surgical plan.

During a preparation period of 14 months, Materialise clinical engineers formed a cohesive team alongside NYU Langone surgeons, rehearsing the operation in a lab environment to develop and fine-tune the surgical plan.

Image-based planning and medical 3D printing have completely revolutionized personalized patient care by providing surgeons with detailed insights and an additional level of confidence before entering the operation room.

Image-based planning and medical 3D printing have completely revolutionized personalized patient care by providing surgeons with detailed insights and an additional level of confidence before entering the operation room.

During a preparation period of 14 months, Materialise clinical engineers formed a cohesive team alongside NYU Langone surgeons, rehearsing the operation in a lab environment to develop and fine-tune the surgical plan.

Surgeons rehearsing the operation in a lab environment to develop and fine-tune the surgical plan.

Pre-surgical planning made it possible for surgeons to virtually select and position various medical implants to predict the optimal anatomical fit.

Pre-surgical planning made it possible for surgeons to virtually select and position various medical implants to predict the optimal anatomical fit.

A fully guided system for bone fragment repositioning and fixation was unique to the patient’s anatomy and helped position the medical tools with great precision, reducing the overall surgery time.

A fully guided system for bone fragment repositioning and fixation was unique to the patient’s anatomy and helped position the medical tools with great precision, reducing the overall surgery time.

Three-dimensional technologies, developed by Materialise, played a crucial role in the world’s first simultaneous double hand and face transplant that was successfully performed at NYU Langone Health in Manhattan. Materialise’s innovative 3-D planning and printing tools enable the speed and accuracy required for such a complex medical procedure. Three-dimensional printed personalized tools such as those used in the double hand and face transplant are also increasingly common for use in routine surgery, providing surgeons with an additional level of confidence which results in improved patient outcome.

The 22-year old patient suffered burn wounds resulting from a car accident, leaving him with severe injuries to his face and both arms. He suffered significant damage to his soft tissue, which severely limited his ability to lead a normal life. During a preparation period of 14 months, Materialise clinical engineers formed a cohesive team alongside NYU Langone surgeons, rehearsing the operation in a lab environment to develop and fine-tune the surgical plan. Once a suitable donor was found, the team, led by Eduardo D. Rodriguez, M.D., the Helen L. Kimmel Professor of Reconstructive Plastic Surgery and chair of the Hansjörg Wyss Department of Plastic Surgery at NYU Langone, had only 24 hours to begin the procedure that would improve the patient’s function, appearance and quality of life.

CT Scans Aid Surgical Plan With On-screen 3-D modeling 

In the months leading up to the surgery Materialise engineers coordinated the development of a surgical plan and created an on-screen 3-D model based on computed tomography (CT) scans. This allowed the surgeons and clinical engineers to virtually plan the procedure and visualize different scenarios in three dimensions, creating an in-depth understanding of the anatomical bone structure and determining the optimal surgical flow. Pre-surgical planning also made it possible for surgeons to virtually select and position various medical implants to predict the optimal anatomical fit. Once the surgical plan was finalized, Materialise 3-D printed the personalized surgical guides, anatomical models and tools for use during the transplant surgery.

CT Scans Used to Create 3-D Printed Cutting and Drilling Guides

During this momentous procedure, Rodriguez and his surgical team of sixteen used Materialise’s 3-D printed cutting and drilling guides. This fully guided system for bone fragment repositioning and fixation was unique to the patient’s anatomy and helped position the medical tools with great precision, reducing the overall surgery time. Additionally, Materialise created 3-D printed sterilizable identification tags for nerves and blood vessels, 3-D printed models that were used during donor transport, and 3-D printed splints, enabling optimal donor hand position during soft tissue reconstruction.

“Complex transplant surgery like this brings together a large team of specialists and presents new and unique challenges”, said Rodriguez. “This demands careful planning and makes timing, efficiency and accuracy absolutely critical. Virtually planning the surgery in 3-D and creating 3-D printed, patient-specific tools offers additional insights in the pre-operative phase and increased levels of speed and accuracy during a time-critical surgery”.

Image-based Planning and 3-D Printing is Revolutionizing Personalized Medicine

“Image-based planning and medical 3-D printing have completely revolutionized personalized patient care by providing surgeons with detailed insights and an additional level of confidence before entering the operation room,” says Bryan Crutchfield, Vice President and General Manager – North America. “As a result, leading hospitals are adopting 3D planning and printing services as part of their medical practices because they create a level of predictability that would be impossible to achieve without the use of 3-D technologies.”

Materialise has pioneered many leading medical applications of 3-D printing and enables researchers, engineers, and clinicians to develop innovative, personalized treatments that help improve and save lives. The Materialise platform of software and services forms the foundation of certified medical 3D printing in clinical and research environments, offering virtual planning software tools, 3D-printed anatomical models, and personalized surgical guides and implants.

For more information: www.materialise.com

Medical 3-D Printing Related Content:

Researchers Use 3-D Printing to Guide Human Face Transplants

Integrated 3-D Imaging Facilitates Human Face Transplantation

Blood Vessels Reorganize After Face Transplantation Surgery

3-D Printing and Computer Aided Design Aids Structural Heart Interventions

RSNA and ACR to Collaborate on Landmark Medical 3D Printing Registry

VIDEO: Collection of 3-D Printed Patient Hearts at Henry Ford Hospital

3-D printed Heart Models Displayed by Vital Images

Nemours Children's Health System Uses 3-D Printing to Deliver Personalized Care

VIDEO: Applications in Cardiology for 3-D Printing and Computer Aided Design

Related Content

In response to the lockdown and social distancing measures enacted to combat the spread of COVID-19, healthcare providers have increasingly adopted the use of remote technologies. According to GlobalData, a leading data and analytics company, companies spent an estimated $115B globally on cybersecurity in 2020, with revenue expected to climb to $237B by 2030.

Getty Images

News | Cybersecurity | February 02, 2021
February 2, 2021 — In response to the lockdown and social distancing measures enacted to combat the spread of...
Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB

Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB) and 4.00e–12 (IGR). The two terciles used to determine threshold values for low-, medium-, and high-risk groups were equal to 0.187 and 0.375. Diamonds correspond to censoring of patients who were still hospitalized at the time when data ceased to be updated. The bands correspond to the sequence of the 95% confidence intervals of the survival probabilities for each day. KB Kremlin-Bicêtre hospital, IGR Institut Gustave Roussy hospital. Courtesy of Nature Communications.

News | Coronavirus (COVID-19) | February 01, 2021
February 1, 2021 — COVID-19...
The four standard views of an individual mammogram were fed into Mirai. The image encoder mapped each view to a vector, and the image aggregator combined the four view vectors into a single vector for the mammogram. In this work, we used a single shared ResNet-18 as an image encoder, and a transformer as our image aggregator. The risk factor predictor module predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed family history, and hormonal factors, from the mammogram vector.

The four standard views of an individual mammogram were fed into Mirai. The image encoder mapped each view to a vector, and the image aggregator combined the four view vectors into a single vector for the mammogram. In this work, we used a single shared ResNet-18 as an image encoder, and a transformer as our image aggregator. The risk factor predictor module predicted all the risk factors used in the Tyrer-Cuzick model, including age, detailed family history, and hormonal factors, from the mammogram vector. The additive hazard layer combined information from both the image aggregator and risk factors (predicted or given) to predict coherent risk assessments across 5 years (Yr).

News | Breast Imaging | January 28, 2021
January 28, 2021 — A new machine learning algorithm based on...
Radiologists of Leuwiliang General Hospital using Lunit INSIGHT CXR and INFINITT PACS G7

Radiologists of Leuwiliang General Hospital using Lunit INSIGHT CXR and Infinitt PACS G7.

News | Coronavirus (COVID-19) | January 27, 2021
January 27, 2021 — Lunit, a South Korean medical...
The key trends Clinicians reviewing a COVID-19 patient's lung CT that reveals the severity of COVID-caused pneumonia. The impact of COVID on radiology was a major, over arching trend at  the 2020 Radiological Society of North America (RSNA) meeting. Getty Imagesbserved at 2020 Radiological Society of North America (RSNA) meeting all focused around COVID-19 (SARS-CoV-2) and the impact it has had on radiology. #RSNA #RSNA20 #RSNA2020

Clinicians reviewing a COVID-19 patient's lung CT that reveals the severity of COVID-caused pneumonia. The impact of COVID on radiology was a major, over arching trend at  the 2020 Radiological Society of North America (RSNA) meeting. Getty Images

Feature | RSNA | January 20, 2021 | By Melinda Taschetta-Millane and Dave Fornell
Vendor neutral archives enable a single, central location to store large volumes of radiology data, but now need to be able to house data from dozens of other departments with a wide array of data formats. This article originally ran as an introduction to the Vendor Neutral Archives comparison chart.
Feature | Vendor Neutral Archive (VNA) | January 20, 2021 | By Dave Fornell
Most radiologists and clinicians are not trained as...