Feature | August 21, 2013

Proton Therapy Offers New, Precise Cancer Treatment for Children with High-Risk Neuroblastoma

CHOP researchers report effective radiation option without exposure to healthy organs

August 21, 2013 — Proton therapy, using high-energy subatomic particles, may offer a precise, organ-sparing treatment option for children with high-risk forms of neuroblastoma. For patients in a new study of advanced radiation treatment, proton therapy spared the liver and kidneys from unwanted radiation, while zeroing in on its target.

“As survival rates improve for children with neuroblastoma, we need to reduce treatment-related long-term toxicities,” said study leader Christine Hill-Kayser, M.D., a radiation oncologist in the cancer center at The Children’s Hospital of Philadelphia (CHOP). “Proton beam therapy offers precise targeting with less radiation exposure to healthy tissue.”

Hill-Kayser and colleagues published their study online June 4, 2013 in Pediatric Blood & Cancer.

Owing to collaboration between Children’s Hospital and radiation oncologists at Penn Medicine, the Roberts Proton Therapy Center, where the study was conducted, is the first proton therapy facility in the U.S. conceived with pediatric patients in mind from the earliest planning stages.

Protons, the positively charged particles in an atom’s nucleus, are used in therapy to destroy DNA in tumors and prevent cancer cells from multiplying. In children, this therapy is often used against spinal tumors. CHOP has recently been directing protons at neuroblastoma, long a special focus of the Hospital’s clinical and research programs.

The current study, said Hill-Kayser, included 13 children with a median age of 3 years who responded well to initial chemotherapy, followed by surgery, more chemotherapy, bone marrow transplant, and in some cases, immunotherapy. The advanced radiation treatment aimed to destroy remaining microscopic areas of cancer cells while minimizing toxicity to healthy tissue.

In planning radiation treatment for each child, the study team determined that 11 patients should receive proton therapy, and that two other patients, because of their specific anatomy and the location of their tumors, should receive intensity-modulated X-ray therapy (IMXT). In IMXT, radiologists sculpt the radiation emitted from 7 different angles to modify radiation dosages in and around the targeted area.

None of the 13 patients had local disease recurrence or acute organ toxicity. For 11 of them, proton therapy provided the best combination of target coverage and organ sparing. “Protons are heavier than the particles in X-rays and have more stopping power,” said Hill-Kayser. “They deposit 90 percent of their energy precisely at the tumor site, with nearly zero radiation away from the tumor. That protects healthy organs—which, as growing tissues, are especially vulnerable to radiation damage in young children.”

The fact that individual characteristics made IMXT preferable to proton therapy in two children, said Hill-Kayser, underscores the need to meticulously customize radiation treatment to each patient. Overall, the current study shows that proton therapy should be considered for children with high-risk neuroblastoma.

For more information: www.chop.edu

Related Content

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

 

News | Radiation Therapy | June 01, 2020
June 1, 2020 — RefleXion Medical, a therape
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
The global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at a CAGR of 3.38%, over the period 2020-2024.
News | Proton Therapy | May 20, 2020
May 20, 2020 — ResearchAndMarkets.com has released its latest report, the ...
An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

USask PhD bio-medical engineering student Farley Chicilo at the Canadian Light Source synchrotron at University of Saskatchewan. Photo courtesy of Canadian Light Source, University of Saskatchewan

News | Radiation Therapy | May 14, 2020
May 14, 2020 — An innovative radiation treatment t
Medical University of South Carolina researchers have developed and validated prediction tools, known as nomograms, that could be used to help prevent delays in the initiation of radiotherapy after surgery for head and neck cancer

 

Evan Graboyes, M.D., and his team believe their nomogram tools will improve survival rates for head and neck cancer patients. Photo courtesy of MUSC Hollings Cancer Center

 

News | Radiation Oncology | May 14, 2020
May 14, 2020 — More than 65,000 Americans are diagnosed annually with head and neck cancer, which most often occurs i
Due to ongoing health concerns related to the spread of the Coronavirus (COVID-19) as well as global travel restrictions, the American Association of Physicists in Medicine (AAPM) has decided to evolve the Joint AAPM/COMP (Canadian Organization of Medical Physicists) Meeting content into a virtual (completely online) meeting in place of the in-person meeting originally scheduled for July 12-16, 2020, in Vancouver, BC.
News | AAPM | May 11, 2020
May 11, 2020 — Due to ongoing health concerns related to the spread of the Coronavirus (...
Figure 1: CT image of lesions in different planes

Figure 1: CT image of lesions in different planes.

Sponsored Content | Case Study | Radiation Oncology | April 30, 2020 | By Christopher Bowen, M.S., DABR