Feature | March 15, 2011 | Jim Katzaroff

Producing Medical Isotopes in the U.S.: A Worthy Goal for the Biotech Industry

Much of nuclear imaging depends on a steady supply of an isotope called molybdenum-99 (Mo-99). A byproduct of nuclear fission, Mo-99 is used to produce another radioactive substance, technetium-99m, which is employed in more than 16 million nuclear imaging procedures every year in the United States alone. These include everything from sentinel node biopsies in cancer surgery to bone scans and cardiac stress tests.

Unfortunately, the supply of Mo-99 and other radioisotopes has been unreliable at best. All of the Mo-99 used in the United States is imported, with the main source being the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. A shutdown for repairs in May 2009 contributed to a global radioisotope shortage. While the reactor has been back in operation since August 2010, it is scheduled for closure in 2015.

The shortage showcases a critical gap in the supply chain. Although the United States has many domestic reactors that could produce the radioisotopes, they do not have the necessary processing facilities or the capacity to take time away from other projects to produce Mo-99. As a result, new production strategies are desperately needed. For some procedures, there’s simply no alternative, and without a reliable domestic supply of isotopes, nuclear medicine would severely limit doctors’ ability to diagnose and treat many diseases.

Already, some clinicians have switched to using thallium-201, which is still commonly produced and used in heart stress studies. Additionally, physicians are finding it harder to get their hands on iodine-131, another radioisotope that is used to treat thyroid cancer, Graves’ disease and hyperthyroidism. Alternatives for many procedures exist, including computed tomography (CT) and positron emission tomography (PET) scanning, using radioisotopes not made in nuclear reactors, but these have drawbacks ranging from increased cost and greater radiation burden to lower image quality.

 

New Tracers, New Sources

In response to this ongoing crisis, strategies are being formulated to increase radioisotope production in the United States. These plans include developing a way to produce Mo-99 and other radioisotopes not with a nuclear reactor, but rather with newly designed compact systems. Currently these strategies are in the planning stages, including at Kennewick, Washington-based Advanced Medical Isotope Corp. Should such plans work out, it may be possible to produce a wider variety of radioisotopes in addition to Mo-99, each with its own specific medical application.

One such radioisotope worth producing in greater amounts within the United States is actinium-225, whose daughter bismuth-213 is used for advanced research in therapy of leukemia and other cancers and also holds promise for treating human immunodeficiency virus (HIV). Additionally useful in cancer diagnosis and staging is carbon-11, which has been employed as a radiotracer in PET scans to study both normal and abnormal brain functions related to various drug addictions. It is also used to evaluate diseases such as Alzheimer’s. This past February, a research paper in the journal Archives of Neurology reported the use of carbon-11 PET scans to detect in vivo fibrillar beta amyloid in older adults.

Further tools in the radioisotope toolbox include cobalt-57, which is used for gamma camera calibration, as a radiotracer in research, and as a source for X-ray fluorescence spectroscopy; and copper-64, which has been employed in PET scanning, planar imaging and single photon emission computed tomography (SPECT) imaging, as well as dosimetry studies, and cerebral and myocardial blood flow. It is also used in stem cell research and cancer treatments.

Fluorine-18 is the primary PET imaging isotope and is used for cancer detection, heart imaging and brain imaging. Last year, in a clinical trial at Johns Hopkins University, a PET agent built around fluorine-18 readily and safely distinguished the brains of Alzheimer’s disease patients from those of healthy volunteers. The study authors concluded in the June 2010 Journal of Nuclear Medicine that their agent could lead to better ways to distinguish Alzheimer’s from other types of dementia, track disease progression and develop new therapeutics to fight the memory-ravaging disease.

Other useful examples include germanium-68, which is being used for the study of thrombosis and atherosclerosis, PET imaging, the detection of pancreatic cancer and attenuation correction. Indium-111 is used for infection imaging, cancer treatments and tracer studies, while iodine-123 is used in brain, thyroid, kidney and myocardial imaging, cerebral blood flow and neurological disease. Its close relative, iodine-124, meanwhile, is a radiotracer used in PET imaging and to create images of the human thyroid. Its other treatment uses include apoptosis, cancer biotherapy, glioma, heart disease, mediastinal micrometastases and thyroid cancer.

Iodine-131 is useful in the diagnosis and treatment of thyroid disease, including cancer, while strontium-82 and its daughter rubidium-82 are used as a myocardial imaging agent for the early detection of coronary artery disease, PET imaging and blood flow tracers. Finally, as mentioned earlier, thallium-201 is used in clinical cardiology, heart imaging, myocardial perfusion studies and cellular dosimetry. And this abbreviated list barely does justice to the variety of potentially useful isotopes.

Read the 2017 article "FDA Clears Path for First Domestic Supply of Tc-99m Isotope." 

Editor’s Note: Jim Katzaroff is chairman and CEO of Kennewick, Washington-based Advanced Medical Isotope Corp. (www.isotopeworld.com). The company is engaged in the production and distribution of medical isotopes. He believes it is a moral imperative to provide an adequate supply of life-saving medical isotopes on American soil. He said doing so will save tens of millions of dollars for the healthcare market, and the lives that might ultimately be saved might make it a worthy endeavor. He can be reached at [email protected].

Related Content

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nucle

Tau (blue) and amyloid (orange) distribution patterns for super-agers, normal-agers and MCI patients, when compared to a group of younger, healthy, cognitively normal, amyloid-negative individuals. Brain projections are depicted at an uncorrected significance level of p < .0001. Color bars represent the respective t-statistic. Image courtesy of Merle C. Hoenig, Institute for Neuroscience and Medicine II - Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany, and Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.

News | PET Imaging | July 16, 2020
July 16, 2020 — Super-agers, or individuals whose cognitive skills are above the norm even at an advanced age, have b
PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

PSMA PET/CT accurately detects recurrent prostate cancer in 67-year-old man. 18F-DCFPyL-PSMA PET/CT shows extensive, intensely PSMA-avid local recurrence in prostate (bottom row; solid arrow) in keeping with the known tumor recurrence in the prostate. Right: PET shows extensive, intensely PSMA-avid local recurrence in prostate (top row; solid arrow) and a solitary bone metastasis in left rib 2 (bottom row; dotted arrow). Image courtesy of Ur Metser, et al.

News | PET-CT | July 16, 2020
July 16, 2020 — New research confirms the high impact of...
Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs

Total-body dynamic 18F-FDG PET imaging with the uEXPLORER scanner allows us to monitor the spatiotemporal distribution of glucose concentration in metastatic tumors in the entire body (a). As compared to a typical clinical standardized uptake value image (b), the parametric image of FDG influx rate (Ki) can achieve higher lesion-to-background (e.g., the liver) contrast. In addition to glucose metabolism imaging by Ki, total-body dynamic PET also enables multiparametric characterization of tumors and organs using additional physiologically important parameters, for example, glucose transport rate K1 (d), across the entire body. Image courtesy of G.B. Wang, M. Parikh, L. Nardo, et al., University of California Davis, Calif.

News | PET Imaging | July 16, 2020
July 16, 2020 — Results from the first...
PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

News | PET-CT | July 15, 2020
July 15, 2020 — ...
Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

News | PET Imaging | July 15, 2020
July 15, 2020 — A first-in-human study presented at the Society of...
Adult male with decades of right neck pain, discomfort and tightening following birth injury. The patient had failed multiple standard therapeutic maneuvers before presenting for 18F-FDG PET/MR imaging. Images shows abnormally elevated FDG uptake (white arrows; SUVmax = 1.2) observed in a linear pattern in the space in the posterolateral right neck, between the oblique capitis inferior and the semispinalis capitis muscles, where the greater occipital nerve resides. By comparison, the same region on the cont

Adult male with decades of right neck pain, discomfort and tightening following birth injury. The patient had failed multiple standard therapeutic maneuvers before presenting for 18F-FDG PET/MR imaging. Images shows abnormally elevated FDG uptake (white arrows; SUVmax = 1.2) observed in a linear pattern in the space in the posterolateral right neck, between the oblique capitis inferior and the semispinalis capitis muscles, where the greater occipital nerve resides. By comparison, the same region on the contralateral, asymptomatic side of the neck has an SUVmax = 0.7. This result encouraged a surgeon to explore the area. The surgeon ultimately found a collection of small arteries wrapped around the nerve in this location. The small arteries underwent lysis by the surgeon and the patient reported tremendous relief of symptoms. (A) Coronal thick slab MIP of 18F-FDG PET. (B) Axial LAVA FLEX MRI through the cervical spine. (C) Axial PET at the same slice as the axial MRI. (D) Fused axial PET/MRI. Image courtesy of Cipriano, et al., Stanford University, CA.

News | SNMMI | July 14, 2020
July 14, 2020 — A new molecular imaging approach utilizing 18F-FDG...
Left: Total-body PET/CT in psoriatic arthritis: multiple joints affected, shoulders, elbows, wrists, knees, ankles and small joints of the hands/feet. Arrow: left wrist; arrowhead: right wrist. Middle: Total-body PET/CT in rheumatoid arthritis: multiple joints affected, right shoulder, small joints of the left hand. Arrowhead at the 4th proximal interphalangeal joint shows classic ring-like uptake pattern. Arrow on the foot images demonstrates the hammer toe deformity besides big toe arthritis. Right: Total

Left: Total-body PET/CT in psoriatic arthritis: multiple joints affected, shoulders, elbows, wrists, knees, ankles and small joints of the hands/feet. Arrow: left wrist; arrowhead: right wrist. Middle: Total-body PET/CT in rheumatoid arthritis: multiple joints affected, right shoulder, small joints of the left hand. Arrowhead at the 4th proximal interphalangeal joint shows classic ring-like uptake pattern. Arrow on the foot images demonstrates the hammer toe deformity besides big toe arthritis. Right: Total-body PET/CT in osteoarthritis: affected joints include the left elbow, right knee (arrow) and right big toe (arrowhead). Image courtesy of YG Abdelhafez et al., University of California Davis, Sacramento, CA.

News | SNMMI | July 14, 2020
July 14, 2020 — For the first time, physicians can examine the systemic burden of inflammatory arthritis simultaneous
World's largest radiation oncology meeting will offer full conference on interactive platform October 25-28, 2020
News | ASTRO | July 09, 2020
July 9, 2020 — Registration opens today for the American Society for Radiation Oncology's (...