Feature | March 29, 2011

New Study Shows WBR Halves SPECT Dose, Acquisition Time

Wide beam reconstruction (WBR) reduces both dose and image acquisition time by 50 percent for myocardial perfusion SPECT (MPI), according to a new study published in the March-April 2011 issue of the Journal of Nuclear Cardiology. WBR is a software program by UltraSPECT for reconstructing nuclear medicine images. Researchers found that with either half the dose of Tc-99m sestamibi or half the acquisition time, WBR resulted in image quality superior to processing with today’s widely used OSEM (Ordered Subset Expectation Maximization) software. The study was conducted at St. Luke’s-Roosevelt Hospital and Columbia University College of Physicians and Surgeons in New York City.

“The escalating radiation levels of today’s advanced imaging exams is causing growing concern among the medical community and the public at large,” said Gordon DePuey, lead researcher and M.D., director of nuclear medicine at St. Luke’s-Roosevelt Hospital and Professor of Radiology at Columbia University. “There is significant pressure to minimize radiation dose, particular for MPI nuclear SPECT exams.”

In addition, the ongoing shortages of radiopharmaceuticals due to nuclear reactor downtime compound the need to minimize dosage. WBR’s reconstruction algorithm incorporating depth-dependent resolution recovery and image noise modeling to deliver a higher quality image with lower count density data. In the new MPI study, researchers evaluated images from 156 patients undergoing myocardial perfusion SPECT with a standard full-time acquisition protocol processed with routine OSEM methods.

The same patients underwent half-time acquisition, and the data were processed with the WBR algorithm. The images were acquired both at rest and following exercise or pharmacologic stress. A second study group of 160 patients received half of the standard radiopharmaceutical dose, with images acquired for the full standard acquisition time. These were processed using WBR only. All images were rated for quality by two observers unaware of the acquisition and processing methods. For both the lower dose and abbreviated acquisition time images, grading parameters included myocardial count density and uniformity, endocardial and epicardial edge definition, visualization and definition of the right ventricle and background noise. For the abbreviated acquisition time images only, SPECT perfusion defects also were examined. Overall, WBR half-time and half-dose image quality was judged as superior to OSEM image quality in both arms of the study. There was no statistically significant difference between the two SPECT protocols in identifying the extent or severity of perfusion defects.

“The results of this study demonstrate that WBR is a powerful means of reducing dose without sacrificing image quality and diagnostic accuracy,” DePuey said. “I would recommend that all nuclear medicine laboratories adopt some strategy for reducing patient radiation exposure incorporating WBR or others techniques that have proven effective.”

DePuey notes that new SPECT cameras with multiple focused detectors are another effective dose-reduction solution. “Wide beam reconstruction technology, however, is a software-only solution,” he says. “For sites unable to budget for a major hardware acquisition, WBR provides an equally effective, more affordable answer.”

For more information: www.ultraspect.com

Related Content

GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...
MEDraysintell Projects Increasing Mergers and Acquisitions in Nuclear Medicine
News | Nuclear Imaging | November 07, 2018
With the recent announcement by Novartis to acquire Endocyte , interest from the conventional pharmaceutical industry...
A PET/CT head and neck cancer scan.

A PET/CT head and neck cancer scan.

Feature | Nuclear Imaging | November 05, 2018 | By Sabyasachi Ghosh
“Experimental validation implemented in real-life situations and not theoretical claims exaggerating small advantages
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
CORAR Supports Medicare Diagnostic Radiopharmaceutical Payment Equity Act of 2018
News | Radiopharmaceuticals and Tracers | October 12, 2018
October 12, 2018 — The Council on Radionuclides and Radiopharmaceuticals Inc.
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...