Feature | March 29, 2011

New Study Shows WBR Halves SPECT Dose, Acquisition Time

Wide beam reconstruction (WBR) reduces both dose and image acquisition time by 50 percent for myocardial perfusion SPECT (MPI), according to a new study published in the March-April 2011 issue of the Journal of Nuclear Cardiology. WBR is a software program by UltraSPECT for reconstructing nuclear medicine images. Researchers found that with either half the dose of Tc-99m sestamibi or half the acquisition time, WBR resulted in image quality superior to processing with today’s widely used OSEM (Ordered Subset Expectation Maximization) software. The study was conducted at St. Luke’s-Roosevelt Hospital and Columbia University College of Physicians and Surgeons in New York City.

“The escalating radiation levels of today’s advanced imaging exams is causing growing concern among the medical community and the public at large,” said Gordon DePuey, lead researcher and M.D., director of nuclear medicine at St. Luke’s-Roosevelt Hospital and Professor of Radiology at Columbia University. “There is significant pressure to minimize radiation dose, particular for MPI nuclear SPECT exams.”

In addition, the ongoing shortages of radiopharmaceuticals due to nuclear reactor downtime compound the need to minimize dosage. WBR’s reconstruction algorithm incorporating depth-dependent resolution recovery and image noise modeling to deliver a higher quality image with lower count density data. In the new MPI study, researchers evaluated images from 156 patients undergoing myocardial perfusion SPECT with a standard full-time acquisition protocol processed with routine OSEM methods.

The same patients underwent half-time acquisition, and the data were processed with the WBR algorithm. The images were acquired both at rest and following exercise or pharmacologic stress. A second study group of 160 patients received half of the standard radiopharmaceutical dose, with images acquired for the full standard acquisition time. These were processed using WBR only. All images were rated for quality by two observers unaware of the acquisition and processing methods. For both the lower dose and abbreviated acquisition time images, grading parameters included myocardial count density and uniformity, endocardial and epicardial edge definition, visualization and definition of the right ventricle and background noise. For the abbreviated acquisition time images only, SPECT perfusion defects also were examined. Overall, WBR half-time and half-dose image quality was judged as superior to OSEM image quality in both arms of the study. There was no statistically significant difference between the two SPECT protocols in identifying the extent or severity of perfusion defects.

“The results of this study demonstrate that WBR is a powerful means of reducing dose without sacrificing image quality and diagnostic accuracy,” DePuey said. “I would recommend that all nuclear medicine laboratories adopt some strategy for reducing patient radiation exposure incorporating WBR or others techniques that have proven effective.”

DePuey notes that new SPECT cameras with multiple focused detectors are another effective dose-reduction solution. “Wide beam reconstruction technology, however, is a software-only solution,” he says. “For sites unable to budget for a major hardware acquisition, WBR provides an equally effective, more affordable answer.”

For more information: www.ultraspect.com

Related Content

ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of Nuclear Cardiology (ASNC) has released a joint expert consensus document wi
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a
Sponsored Content | Videos | Clinical Decision Support | June 29, 2017
Rami Doukky, M.D., system chair, Division of Cardiology, professor of medicine, Cook County Health and Hospitals Syst
Dual-Agent PET/MR With Time of Flight Detects More Cancer

Tc-99m MDP bone scan (left) is negative for osseous lesions. NaF/FDG PET/MRI (right and second slide) confirms absence of bone metastases, but shows liver metastases. Image courtesy of Stanford University.

News | PET-MRI | June 20, 2017
Simultaneous injections of the radiopharmaceuticals fluorine-18 fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (...
Combined Optical and Molecular Imaging Could Guide Breast-Conserving Surgery

WLE specimen from a patient with a grade 3, ER-/HER2-, no special type (NST) carcinoma. (A) Cerenkov image; (B) Grey-scale photographic image overlaid with Cerenkov signal. An increased signal from the tumor is visible (white arrows); mean radiance is 871 ± 131 photons/s/cm2/sr, mean TBR is 3.22. Both surgeons measured the posterior margin (outlined in blue) as 2 mm (small arrow); a cavity shaving would have been performed if the image had been available intraoperatively. The medial margin (outlined in green) measured >5 mm by both surgeons. Pathology ink prevented assessing the lateral margin; a phosphorescent signal is visible (open arrows). (C) Specimen radiography image. The absence of one surgical clip to mark the anterior margin, and the odd position of the superior margin clip (white arrow) prevented reliable margin assessment. (D) Combined histopathology image from two adjacent pathology slides on which the posterior margin (bottom of image) and part of the primary tumor are visible (open arrows). The distance from the posterior margin measured 3 mm microscopically (double arrow). The medial margin is > 5 mm (not present in image). Credit: A. D. Purushotham, M.D., King’s College London, UK

News | Nuclear Imaging | June 20, 2017
June 20, 2017 — Breast-conserving surgery (BCS) is the primary treatment for early-stage...
Overlay Init