Feature | September 20, 2010

New Math Model May Simplify High-Dose Radiosurgery Planning

September 20, 2010 – There is yet no straightforward way to determine the optimal dose level and treatment schedules for high-dose radiation therapies such as stereotactic radiation therapy, used to treat brain and lung cancer, or for high-dose brachytherapy for prostate and other cancers. Radiation oncologists at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) may have solved the problem by developing a new mathematical model that encompasses all dose levels.

Typically, radiation therapy for cancer is given in daily, low doses spread over many weeks. Oncologists often calculate the schedules for these fractionated, low-dose treatment courses using a mathematical model called the linear-quadratic (LQ) Model. The same calculation model is used to evaluate radiation response, interpret clinical data and guide clinical trials.

“Unfortunately the LQ Model doesn’t work well for high-dose radiation therapy,” says co-author Dr. Nina Mayr, professor of radiation oncology at the OSUCCC-James. “Our study resolves this problem by modifying the current method to develop the Generalized LQ (gLQ) Model that covers all dose levels and schedules.”

If verified clinically, the Generalized gLQ Model could guide the planning of dose and schedules needed for the newer radiosurgery and stereotactic radiation therapy and high-dose brachytherapy procedures that are increasingly used for cancer patients, she says.

“Developing proper radiation dose schedules for these promising high-dose treatments is very challenging,” Mayr says. “Typically, it involves phase I dose-finding studies and a long, cumbersome process that allows only gradual progression from the pre-clinical and clinical trial stages to broader clinical practice.”

The new gLQ Model could allow oncologists to design radiation dose schedules more efficiently, help researchers conduct clinical trials for specific cancers more quickly and make these high-dose therapies available to cancer patients much sooner, Mayr says.

Fractionated low-dose therapy causes cumulative damage to tumor cells during the many weeks of exposure, while causing minimal damage to hardier normal cells. Patients, however, must return repeatedly to the hospital for many weeks to complete their treatment. High-dose therapy has become possible because of advances in computer and radiation technology. It uses multiple beams of radiation that conform tightly to a tumor’s shape. They converge on the cancer to deliver higher total radiation levels, while sparing normal tissues. This kills more tumor cells per treatment, so far fewer treatments are needed overall.

The new study, published recently in the journal Science Translational Medicine, tested the gLQ Model in cell and animal models and is expected to be evaluated soon in clinical trials.

“Our Generalized LQ Model determines appropriate radiation levels across the entire wide spectrum of doses, from low and high, and from many to very few treatments, which is a new approach,” Mayr says.

Note: First author Dr. Jian Z. Wang, director of the OSUCCC-James Tumor Response Modeling Laboratory in Radiation Oncology, passed away unexpectedly in June 2010. He was largely responsible for developing the Generalized gLQ Model. Other Ohio State researchers involved in this study were Drs. Zhibin Huang, Simon S. Lo and William T.C. Yuh.

Related Content

American College of Radiology Releases New Patient-Oriented Appropriateness Criteria Summaries
News | Patient Engagement | January 19, 2018
January 19, 2018 — New Appropriateness Criteria (AC) Patient Summaries from the American College of Radiology (ACR) c
First Hospitals Achieve Inter-System Connectivity Across Accuray Radiation Therapy Platforms
News | Radiation Therapy | January 19, 2018
Accuray Inc. announced recently that the Heidelberg University Hospital in Heidelberg, Germany, and Oscar Lambret...
National Clinical Decision Support Company (NDSC) has an exclusive deal with the American College of Radiology (ACR) to provide medical imaging appropriate use criteria (AUC).

National Clinical Decision Support Company (NDSC) has an exclusive deal with the American College of Radiology (ACR) to provide medical imaging appropriate use criteria (AUC). 

Feature | Clinical Decision Support | January 18, 2018
January 18, 2018 — Change Healthcare announced the acquisition of National Decision Support Company (NDSC), a leader
RayStation Selected for New Carbon Ion Therapy Center in Japan
News | Treatment Planning | January 18, 2018
January 18, 2018 – RayStation has been chosen as the treatment planning system for a new carbon-ion therapy facility
Raysearch Receives First Order for the Raycare Oncology Information System
News | Oncology Information Management Systems (OIMS) | January 18, 2018
January 18, 2018 – Anderson Regional Cancer Center (ARCC) in Meridian, Mississippi, has placed the first order for...
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Imaging | January 17, 2018
January 17, 2018 — Philips recently announced the launch of Technology Maximizer, a cross-modality program designed t
RSNA 2017 Celebrates Innovation in Radiology
News | Imaging | January 15, 2018
January 15, 2018 — The Radiological Society of North America’s...
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Overlay Init