September 20, 2010 – There is yet no straightforward way to determine the optimal dose level and treatment schedules for high-dose radiation therapies such as stereotactic radiation therapy, used to treat brain and lung cancer, or for high-dose brachytherapy for prostate and other cancers. Radiation oncologists at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) may have solved the problem by developing a new mathematical model that encompasses all dose levels.

Typically, radiation therapy for cancer is given in daily, low doses spread over many weeks. Oncologists often calculate the schedules for these fractionated, low-dose treatment courses using a mathematical model called the linear-quadratic (LQ) Model. The same calculation model is used to evaluate radiation response, interpret clinical data and guide clinical trials.

“Unfortunately the LQ Model doesn’t work well for high-dose radiation therapy,” says co-author Dr. Nina Mayr, professor of radiation oncology at the OSUCCC-James. “Our study resolves this problem by modifying the current method to develop the Generalized LQ (gLQ) Model that covers all dose levels and schedules.”

If verified clinically, the Generalized gLQ Model could guide the planning of dose and schedules needed for the newer radiosurgery and stereotactic radiation therapy and high-dose brachytherapy procedures that are increasingly used for cancer patients, she says.

“Developing proper radiation dose schedules for these promising high-dose treatments is very challenging,” Mayr says. “Typically, it involves phase I dose-finding studies and a long, cumbersome process that allows only gradual progression from the pre-clinical and clinical trial stages to broader clinical practice.”

The new gLQ Model could allow oncologists to design radiation dose schedules more efficiently, help researchers conduct clinical trials for specific cancers more quickly and make these high-dose therapies available to cancer patients much sooner, Mayr says.

Fractionated low-dose therapy causes cumulative damage to tumor cells during the many weeks of exposure, while causing minimal damage to hardier normal cells. Patients, however, must return repeatedly to the hospital for many weeks to complete their treatment. High-dose therapy has become possible because of advances in computer and radiation technology. It uses multiple beams of radiation that conform tightly to a tumor’s shape. They converge on the cancer to deliver higher total radiation levels, while sparing normal tissues. This kills more tumor cells per treatment, so far fewer treatments are needed overall.

The new study, published recently in the journal Science Translational Medicine, tested the gLQ Model in cell and animal models and is expected to be evaluated soon in clinical trials.

“Our Generalized LQ Model determines appropriate radiation levels across the entire wide spectrum of doses, from low and high, and from many to very few treatments, which is a new approach,” Mayr says.

Note: First author Dr. Jian Z. Wang, director of the OSUCCC-James Tumor Response Modeling Laboratory in Radiation Oncology, passed away unexpectedly in June 2010. He was largely responsible for developing the Generalized gLQ Model. Other Ohio State researchers involved in this study were Drs. Zhibin Huang, Simon S. Lo and William T.C. Yuh.


Related Content

News | Radiopharmaceuticals and Tracers

Dec. 11, 2025 — Telix Pharmaceuticals Ltd. has announced a strategic clinical collaboration with Varian, a Siemens ...

Time December 11, 2025
arrow
News | Artificial Intelligence

Dec. 1, 2025 — Researchers at the University of California, Berkeley and University of California, San Francisco have ...

Time December 10, 2025
arrow
News | Computed Tomography (CT)

A new study shows large increases in the use of computed tomography (CT) scans of the head in emergency departments ...

Time December 05, 2025
arrow
News | Breast Imaging

Dec. 01, 2025 — DeepHealth, a wholly owned subsidiary of RadNet, Inc., has launched the DeepHealth Breast Suite,2 an end ...

Time December 04, 2025
arrow
News | FDA

Dec. 02, 2025 — Alpha Tau Medical Ltd., the developer of the alpha-radiation cancer therapy Alpha DaRT, has announced ...

Time December 04, 2025
arrow
News | X-Ray

Dec. 1, 2025 – Zwanger-Pesiri Radiology, one of the most respected and technologically advanced outpatient radiology ...

Time December 03, 2025
arrow
News | Interventional Radiology

Dec. 1, 2025 — GE HealthCare has unveiled the Allia Moveo,1 an image guiding solution designed to enhance mobility and ...

Time December 02, 2025
arrow
News | Mammography

Nov. 30, 2025 — At RSNA 2025, Siemens Healthineers will introduce new capabilities for its Mammomat B.brilliant ...

Time December 02, 2025
arrow
News | RSNA 2025

Dec. 2, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, will present 14 studies at RSNA ...

Time December 02, 2025
arrow
News | Archive Cloud Storage

Nov. 30, 2025 — Gradient Health, Inc. has released Atlas 2, a major upgrade to its self-service medical imaging data ...

Time December 01, 2025
arrow
Subscribe Now