Feature | October 22, 2013

New Imaging Technique Can Identify Breast Cancer Subtypes and Early Treatment Response

Optical metabolic imaging measures metabolic activity in cancer cells

October 22, 2013 — An optical imaging technique that measures metabolic activity in cancer cells can accurately differentiate breast cancer subtypes, and it can detect responses to treatment as early as two days after therapy administration, according to a study published in Cancer Research, a journal of the American Association for Cancer Research.
 
"The process of targeted drug development requires assays that measure drug target engagement and predict the response (or lack thereof) to treatment," said Alex Walsh, graduate student in the Department of Biomedical Engineering, Vanderbilt University. "We have shown that optical metabolic imaging (OMI) enables fast, sensitive and accurate measurement of drug action. Importantly, OMI measurements can be made repeatedly over time in a live animal, which significantly reduces the cost of these preclinical studies."
 
Human cells undergo extensive chemical reactions called metabolic activity to produce energy, and this activity is altered in cancer cells. When cancer cells are treated with anticancer drugs, their metabolic activity changes. OMI takes advantage of the fact that two molecules involved in cellular metabolism, called nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), naturally emit fluorescence when exposed to certain forms of light. In this way, OMI generates distinct signatures for cancer cells with a different metabolism and their responses to drugs.
 
Walsh and colleagues used a custom-built, multiphoton microscope and coupled it with a titanium-sapphire laser that causes NADH and FAD to emit fluorescence. They used specific filters to isolate the fluorescence emitted by these two molecules and measured the ratio of the two as "redox ratio."
 
When they placed normal and cancerous breast cells under the microscope, OMI generated distinct signals for the two types of cells. OMI could also differentiate between estrogen receptor-positive, estrogen receptor-negative, HER2-positive and HER2-negative breast cancer cells.
 
Next, the researchers tested the effect of the anti-HER2 antibody trastuzumab on three breast cancer cell lines that respond differently to the antibody. They found that the redox ratios were significantly reduced in drug-sensitive cells after trastuzumab treatment but unaffected in the resistant cells.
 
They then grew human breast tumors in mice and treated some of these with trastuzumab. When they imaged tumors in live mice, OMI showed a difference in response between trastuzumab-sensitive and -resistant tumors as early as two days after the first dose of the antibody. In comparison, FDG-positron emission tomography (PET) imaging could not measure any difference in response between trastuzumab-sensitive and -resistant tumors at any time point in the experiment, which lasted 12 days.
 
"Cancer drugs have profound effects on cellular energy production, and this can be harnessed by OMI to identify responding cells from nonresponding cells," said Walsh. 
"We are hoping to develop a high-throughput screening method to predict the optimal drug treatment for a particular patient."
 
Importantly, OMI can be used on tissues freshly excised from patients but, with further development, it could be incorporated in endoscopes for live imaging of human cancers, according to the investigators.
 
This study was funded by the National Institutes of Health, the National Science Foundation, the Department of Defense Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center and Vanderbilt University Medical Center. The authors have no conflicts of interest to disclose.
 
For more information: www.aacr.org
 

Related Content

Artificial intelligence (AI)-assisted software was used to identify inflammatory tissues in lung and automatically segment inflammatory lesions. Three-dimensional image shows regions of COVID-19 pneumonia in lung through AI postprocessing. Image courtesy of the American Journal of Roentgenology (AJR)

Artificial intelligence (AI)-assisted software was used to identify inflammatory tissues in lung and automatically segment inflammatory lesions. Three-dimensional image shows regions of COVID-19 pneumonia in lung through AI postprocessing. Image courtesy of the American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | July 10, 2020
July 10, 2020 — An open-access Ameri
Simulation finds starting at age 30 with MRI and mammography to be the preferred strategy; starting at 25 prevented marginally more deaths, but with more testing and emotional stress

Getty Images

News | Breast Imaging | July 09, 2020
July 9, 2020 — Chest radiation is used to treat children with Hodgkin and non-Hodgkin lymphoma as well as lung metast
 Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Investigators led by a team at Massachusetts General Hospital (MGH) now describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated functionally intact brain connections and weeks later he recovered the ability to follow commands

Getty Images

News | Coronavirus (COVID-19) | July 08, 2020
July 8, 2020 — Many patients with severe coronavirus disease 2019 (...
Hologic, Inc. announced he U.S. launch of the SuperSonic MACH 40 ultrasound system, expanding the company’s suite of ultrasound technologies with its first premium, cart-based system.
News | Breast Imaging | July 08, 2020
July 8, 2020 — Hologic, Inc. announced he U.S.
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 30, 2020 | By Melinda Taschetta-Millane
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020.

Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020. Courtesy of Nature Medicine

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The characterization of COVID-19