Feature | August 07, 2012

New CT Technique Provides Higher Quality Images of Joint Replacements

Known component reconstruction (KCR) may reduce radiation exposure

August 7, 2012 — A new method of computed tomography (CT) could produce significantly improved images of knee, spine and hip implants, and may lower radiation exposure, suggested preliminary research presented at the 2012 American Association of Physicists in Medicine (AAPM) annual meeting.

Many of the millions of Americans who receive joint replacements as treatment of arthritis or trauma need CT scans to assess wear, loosening of the prosthesis, fractures or infection, but due to device interference, the images often are tainted by streaks or blurring, which makes diagnosis and assessment of the area around the implant difficult or impossible.

While conventional CT ignores information about the implant, the method developed at Johns Hopkins University in Baltimore, called known component reconstruction (KCR), incorporates a computerized model of the implant’s shape and material content into the 3-D image reconstruction process. Therefore, KCR yields higher image quality and could reduce radiation exposure. Researchers are currently studying the method in clinical CT systems and assessing its potential for routine use in hospitals. 

“Every year more than 600,000 people get total knee replacements, which are among the most difficult implants to image around. We truly need a better way to image knee replacements and other implants, and this method is promising,” said co-author J. Webster Stayman, Ph.D., faculty research associate in biomedical engineering at Johns Hopkins University. “This technique is particularly well-suited for implant assessment because surgeons typically know the specific model of the implant. Getting that information into the imaging system could allow them to clearly see tissues around the implant and measure its exact orientation.”

Researchers tested the method in computer simulations and the laboratory using knee implants – one of the most difficult implants to image – as well as surgical screws and rods used in spinal fixation. The results presented at the meeting verified the method using real data and demonstrated that it potentially could be applied generally to CT machines.

“The KCR technique is an exciting advance that combines iterative reconstruction for reduction in radiation dose with strong prior information about implants that are known to be in the image,” said co-author W. Zbijewski, Ph.D., senior research scientist at Johns Hopkins. “We’re working on extending the technique to situations in which the implant changes shape and applying it for the first time to new CT systems for diagnostic radiology and surgery.”

In addition to Stayman and Zbijewski, co-authors of the study presented were Y. Otake, J. Carrino, A. Khanna and J. Siewerdsen.

Related Content

Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
Canon Adds Radiation Therapy Package to Aquilion Prime, Lightning CT Systems
News | Computed Tomography (CT) | February 11, 2019
In the patient-centric world of radiation oncology, it is critical that computed tomography (CT) simulation is...
Korean National Training Center Installs Carestream OnSight 3D Extremity System
News | Computed Tomography (CT) | February 07, 2019
Jincheon National Training Center in Jincheon, South Korea, installed a Carestream OnSight 3D Extremity System at its...
Canon Medical Debuts Alphenix 4-D CT at RSNA 2018
Technology | Angiography | February 06, 2019
Canon Medical Systems USA Inc. recently introduced a new angiography configuration featuring its Alphenix Sky + C-arm...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
MaxQ AI's Accipio Software Integrated to GE's Smart Subscription Platform
News | Computed Tomography (CT) | January 29, 2019
MaxQ AI and GE Healthcare announced that MaxQ's Accipio artificial intelligence (AI) platform will now be a part of GE...
Artificial Intelligence Research Receives RSNA Margulis Award
News | Digital Radiography (DR) | January 28, 2019
The Radiological Society of North America (RSNA) presented its seventh Alexander R. Margulis Award for Scientific...