Feature | October 11, 2013

A protein receptor for HDL may make breast cancer more aggressive and offer a new target for treating the disease

October 11, 2013 — High levels of high-density lipoprotein (HDL) have been linked to increased breast cancer risks and enhanced cancer aggressiveness in animal experiments.

A team of researchers led by Philippe Frank, Ph.D., a cancer biologist in the department of biochemistry and molecular biology, Thomas Jefferson University, has shown that an HDL receptor found on breast cancer cells may be responsible for this effect, proposing a new molecular target that could help treat the disease.

"If we can block the activity of the HDL receptor in breast cancer, we may be able to limit the harmful effects of HDL while maintaining levels that are beneficial for blood vessels," said Frank.

The work was published in the journal Breast Cancer Research.

To study the effect of HDL on cancer cells at the molecular level, Frank and colleagues exposed breast cancer cell lines to HDL and noticed that signaling pathways involved in cancer progression were activated, and that the cells began to migrate in an experimental model mimicking metastasis.

The researchers then limited the expression of the HDL receptor SR-BI in the cells using silencing ribonucleic acid (RNA) to reduce the receptor’s levels. This reduced the activities of the signaling pathways that promote tumor progression. In addition, cells with fewer SR-BI receptors displayed reduced proliferation rates and migratory abilities than cells with normal SR-BI levels. Most importantly, reduced SR-BI levels were associated with reduced tumor formation in a mouse model of tumorigenesis. The researchers then blocked the SR-BI receptor in a breast cancer cell line with a drug called BLT-1 and noticed reduced proliferation and signaling via proteins linked to tumor formation.

This study supports the idea that HDL plays a role in the development of aggressive breast cancers and that inhibiting its function via SR-BI in breast cancer cells may stall cancer growth.

Additional studies will be needed to develop more specific drugs to inhibit SR-BI. "Also, we need to understand what levels of cholesterol are required by the tumor before trying to reduce or modify lipid levels in cancer patients," said Frank. “We hope this study will lead to the development of new drugs targeting SR-BI or cholesterol metabolism and eventually preventing tumor progression.”

For more information: www.jefferson.edu, www.breast-cancer-research.com


Related Content

News | FDA

Dec. 8, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, has submitted a 510(k) premarket ...

Time December 08, 2025
arrow
News | Breast Imaging

Dec. 01, 2025 — DeepHealth, a wholly owned subsidiary of RadNet, Inc., has launched the DeepHealth Breast Suite,2 an end ...

Time December 04, 2025
arrow
News | Mammography

Nov. 30, 2025 — At RSNA 2025, Siemens Healthineers will introduce new capabilities for its Mammomat B.brilliant ...

Time December 02, 2025
arrow
News | RSNA 2025

Dec. 2, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, will present 14 studies at RSNA ...

Time December 02, 2025
arrow
News | Women's Health

Dec. 1, 2025 — A study of data from seven outpatient facilities in the New York region found that 20-24% of all the ...

Time December 02, 2025
arrow
News | Mammography

Nov. 26, 2025 — GE HealthCare has announced it received FDA Premarket Authorization for Pristina Recon DL, an advanced ...

Time November 29, 2025
arrow
News | Ultrasound Imaging

Nov. 12, 2025 — GE HealthCare and DeepHealth, Inc., a wholly owned subsidiary of RadNet, Inc., have announced their ...

Time November 20, 2025
arrow
News | Breast Imaging

Nov. 17, 2025 — RadNet, Inc. and its wholly owned subsidiary, DeepHealth have announced results from the largest real ...

Time November 17, 2025
arrow
News | Radiology Business

Nov. 12, 2025 — Siemens has announced plans to deconsolidate its remaining stake in Siemens Healthineers (currently ...

Time November 13, 2025
arrow
News | Artificial Intelligence

Nov. 6, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, recently announced that Volpara ...

Time November 07, 2025
arrow
Subscribe Now