Feature | June 20, 2014

A Few Circulating Cancer Cells Could Cue Risk of Metastases

Research combines novel molecular imaging techniques to predict spread of cancer and patient survival based on outlier cancer cells in blood

June 20, 2014 — A simple noninvasive blood test matched with state-of-the-art molecular imaging of individual cells could help oncologists understand their patients’ chances of survival, said researchers at the 2014 annual meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

Metastasis accounts for an estimated 90 percent of cancer deaths. For decades, researchers tried to develop a way to gauge a cancer’s risk of metastasizing from a blood sample — the long-sought-after liquid biopsy. Today there are numerous methods available to isolate lone cells. Novel methods recently used to study those cells are radioluminescence microscopy, which combines nuclear medicine, optical imaging and single-cell autoradiography (SCAR), used to localize the micro-distribution of radioactive substances in a single cell in order to image a particular physiological process, such as a receptor expressing genetic information or an enzyme involved in cellular metabolism.

“We are now starting to study the properties of these lone cancer cells, which could be predictive of different disease states, and that understanding could help guide therapy decisions,” said Laura S. Sasportas, a principal researcher and Ph.D. candidate in the Gambhir Lab in the department of bioengineering at Stanford University. “The great potential of looking at circulating tumor cells (CTCs) has been limited mainly by their extreme rarity. For example, in the case of breast cancer, CTCs are estimated to be in the order of a few to a few hundred cells among billions of blood cells in a typical 7.5 milliliter blood sample from a cancer patient. In the past decade, however, CTC research has been booming due to the development of exciting new technologies that can sensitively detect and harvest those very rare cells from patient’s blood.”

For this study, researchers took breast cancer cells isolated from the blood of small animal models and imaged them using radioluminescence microscopy and SCAR along with a common molecular imaging radiotracer called F-18 fluorodeoxyglucose (FDG). The latter mirrors the exchange of energy in the presence of glucose in order to target the few hyper-metabolic cancer cells within these blood samples. Results of the research showed that less than three percent of CTCs in the sample indicated increased cellular metabolism compared to the parent cancer cell line. Researchers are not yet sure if this indicates an aggressive cancer cell or not. Further research and validation in clinical trials is needed to strengthen the theory.

“We hypothesize that the unexplored metabolic characterization of CTCs could provide valuable information for disease monitoring,” said Sasportas. “By evaluating the glucose metabolism of CTCs with F-18 FDG, we could better manage the care of cancer patients by improving therapy selection and therefore avoiding unnecessary treatment.”

For more information: www.snmmi.org

Related Content

The FLASH Effect significantly improves the therapeutic ratio for curing cancer

The FLASH Effect significantly improves the therapeutic ratio for curing cancer

News | Radiation Oncology | July 28, 2021
July 28, 2021 — IntraOp Medical Corporation announced that ...

Positrigo founders Max Ahnen, Ph.D. (left) and Jannis Fischer, Ph.D.

News | PET Imaging | July 16, 2021
American Society for Radiation Oncology (ASTRO) to host in-person Annual Meeting in Chicago, October 24-27

Getty Images

News | ASTRO | July 08, 2021
July 8, 2021 — Registration opens today for the American Society for Radiation Oncology's (...
Aduhelm should be initiated in patients with mild cognitive impairment due to Alzheimer’s disease or mild Alzheimer’s dementia

Getty Images

News | PET Imaging | July 08, 2021
July 8, 2021 — Biogen and...
The U.S. Food and Drug Administration (FDA) approved a new imaging agent for detection of prostate cancer, providing a more effective imaging approach to detect the spread of cancer to other parts of the body. Piflufolastat F-18 injection is the first fluorinated prostate-specific membrane antigen (PSMA) agent approved by the FDA and also the first commercially available PSMA PET imaging agent.

Image courtesy of JNM

News | PET Imaging | June 28, 2021
June 28, 2021 — The U.S.
Master Supply Agreement encompasses clinical development and commercial supply for Clarity’s Cu-67-based candidates to treat neuroblastoma, breast and prostate cancers, among others
News | Radiopharmaceuticals and Tracers | June 22, 2021
June 22, 2021 — NorthStar Medical Radioisotopes, LLC, a global innovator in the development, production and commercia
A novel positron emission tomography (PET) radiotracer has been shown to effectively measure increases in brain tau—a distinguishing characteristic of Alzheimer’s disease—before any symptoms of the disease are observed.

Figure 1. Tau accumulation over one year measured in composite A) mesial temporal ROI; and B) temporoparietal ROI in cognitively unimpaired participants (blue) and cognitively impaired participants (red). The CI group included participants with clinical mild cognitive impairment and dementia. Higher rates of tau accumulation were observed in participants on the AD continuum (CU Aβ+ve and CI Aβ+ve). Participants with the highest baseline tau and rates of tau accumulation were younger and more likely to be CI Aβ+ve. Image courtesy of SNMMI

News | PET Imaging | June 16, 2021
June 16, 2021 — A novel positron emission tomography (PET
SNMMI's Image of the Year is a detailed depiction of areas of cognitive impairment, neurological symptoms and comparison of impairment over a six-month time frame

Figure 1. A: COVID-19-related spatial covariance pattern of cerebral glucose metabolism overlaid onto an MRI template. Voxels with negative region weights are color-coded in cool colors, and regions with positive region weights in hot colors. B: Association between the expression of COVID-19-related covariance pattern and the Montreal Cognitive Assessment (MoCA) score adjusted for years of education. Each dot represents individual patient. C: Results of a statistical parametric mapping analysis. Upper row illustrates regions that show significant increases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the subacute stage (paired t test, p < 0.01, false discovery rate-corrected). Bottom row depicts regions that still show significant decreases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the age-matched control cohort at an exploratory statistical threshold (two-sample t test, p < 0.005). Image Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg

News | PET Imaging | June 16, 2021
June 16, 2021 — The effects of COVID-19 on the b
A new imaging technique has the potential to detect neurological disorders — such as Alzheimer's disease — at their earliest stages, enabling physicians to diagnose and treat patients more quickly. Termed super-resolution, the imaging methodology combines position emission tomography (PET) with an external motion tracking device to create highly detailed images of the brain.

Result of the Hoffman brain phantom study. Top row: same PET slice reconstructed with A) 2mm static OSEM, B) 1mm static OSEM, C) proposed SR method and D) corresponding CT slice (note that the CT image can be treated as a high-resolution reference). Middle row: zoom on region of interest for corresponding images. Bottom row: Line profiles for corresponding data. Image created by Y Chemli, et al., Gordon Center for Medical Imaging: Department of Radiology Massachusetts General Hospital, Harvard Medical School, Boston, MA.

News | PET Imaging | June 14, 2021
June 14, 2021 — A new imaging technique has the potential to detect neurological disorders — such as...