Feature | Medical 3-D Printing | February 22, 2017

Children's Hospital Los Angeles Cardiologist Creates Modified Stent for 18-month-old Using Printed 3-D Model

Team uses CT heart scans to create 3-D model of obstructed pulmonary artery to fashion a smaller stent

Children's Hospital Los Angeles, CHLA, Frank Ing, 3-D printed model, pulmonary artery

Pediatric interventional cardiologist Frank Ing, M.D., chief of the Division of Cardiology and co-director of the Heart Institute at Children’s Hospital Los Angeles. Photo courtesy of Children's Hospital Los Angeles.

Children's Hospital Los Angeles, CHLA, pediatric stent, 3-D printed model, Nate Yamane

Children's Hospital Los Angeles doctors practiced customizing a stent to fit into Nate's 9-millimeter narrowing using this 3-D printed model (branch on left). The model also recreated an existing stent in Nate's other pulmonary artery branch (top right). Photo courtesy of Children's Hospital Los Angeles.

February 22, 2017 — When Children’s Hospital Los Angeles cardiologists found evidence that a portion of Nate Yamane’s pulmonary artery they had repaired once before was again narrowing, pediatric interventional cardiologist Frank Ing, M.D., decided they needed to insert a stent to keep the right artery open.

But due to the size of the narrowing, about 9 millimeters, doctors needed to customize the stent to fit into the smaller space and they wanted to perfect their measurements before the actual procedure. Using computed tomography (CT) scans of Nate’s heart, they created a 3-D printed model of the obstructed region. Ing was then able to fashion a smaller stent to fit precisely into the narrowed artery in the model.

"I have to say, the 3-D model was very helpful because it gave me confidence that [the size of the stent] was going to work," said Ing.

Born in June 2015 with tetralogy of Fallot (TOF) with pulmonary atresia, the 7.1-pound infant Yamane had trouble breathing shortly after birth. The cause: a genetic abnormality resulting in heart defects that obstructed his pulmonary artery, preventing blood pumped by the heart from flowing into the lungs.

He was rushed to Children’s Hospital Los Angeles from a South Bay hospital in critical condition. Pulmonary atresia — a more severe version of TOF — occurs when the pulmonary artery fails to form properly in utero, prompting the human body to grow collateral arteries that redirect blood around the obstruction and to the lungs (a typical development with these types of blockages). About one in 10,000 children are born with this congenital heart defect.

“Imagine blood flowing in the artery like cars on the freeway, and it’s blocked. Cars exit and find an alternate route to its destination; blood does the same, and in this case finds its way through collateral vessels to the lungs,” explained Ing, the chief of the Division of Cardiology and co-director of the Heart Institute at Children’s Hospital Los Angeles.

But after birth, those vessels need to be rebuilt quickly or the heart will fail. Using a surgical technique called unifocalization, surgeons can repair the vessels by sewing them together. “We use whatever the body gives us,” explained Ing, a professor of clinical pediatrics and medicine at the Keck School of Medicine of the University of Southern California.

A month into his young life, Nate had undergone two open-heart surgeries and a catheterization procedure, but doctors were not done. In December 2015, Nate's pulmonary arteries were found to be narrowed in both the right and the left branch. At the time, a team led by Ing was able to use a balloon to open the right side. However, to keep the left section open they had to insert a stent, specially modified using a technique developed at CHLA, to fit the narrowed portion of the child's left pulmonary artery (about 15mm). Stents do not normally come that small, but by carefully cutting their smallest existing stent and folding it back upon itself, Ing tailored a functional custom stent that worked perfectly and did not jut out needlessly into other areas.

Almost immediately, Nate saw marked improvement in blood flow, including a healthy drop in blood pressure. Still, in the coming months, he gained little weight and had to grow bigger and stronger before considering another procedure. “We did physical therapy and tried to fatten him up,” said Nate’s mother, Courtney.

Watch the VIDEO "Use of 3-D Printing To Help Guide Structural Heart Intervention."

On Jan. 19, 2017, Ing inserted the second, even smaller stent into Nate’s right pulmonary artery in CHLA's catheterization lab before an international audience of cardiologists watching on a live video feed at the Pediatric and Adult Interventional Cardiac Symposium in Miami. Using the stent that was modified in advance to the same specifications in the model, Ing and his team were able to open up Nate's right pulmonary artery, with successful results; Nate’s oxygen levels improved overnight.

In the months and years ahead, Nate will need additional surgeries, but his weight is up to 21.5 lbs., and he’s eating better and getting stronger. “He’s rolling around with energy and even took his first baby steps,” said Courtney, who also has a four-year-old at home. “There’s a big difference and a lot of improvement. We’re going in the right direction.”

Read the ITN feature story "The Future of 3-D Printing in Medicine."

For more information: www.chla.org

Related Content

Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
FDA Clears GE's Deep Learning Image Reconstruction Engine
Technology | Computed Tomography (CT) | April 19, 2019
GE Healthcare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) of its Deep Learning Image...
Technological Advancements Expected to Drive Virtual Reality Growth in Healthcare
News | Advanced Visualization | April 04, 2019
Increasing demand for innovative diagnostic techniques, neurological disorders and increasing disease awareness are...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
Medivis Unveils AnatomyX Augmented Reality Education Platform
Technology | Advanced Visualization | April 02, 2019
Medical imaging and visualization company Medivis announced the launch of AnatomyX, its augmented reality (AR) platform...
Sponsored Content | Videos | Advanced Visualization | April 01, 2019
GE Healthcare goes beyond core equipment maintenance to help clients solve some of their most important asset and cli
Novarad Names New President
News | Enterprise Imaging | March 29, 2019
Medical imaging software company Novarad announced that it has appointed Paul Jensen as company president.
Johns Hopkins Medicine First in U.S. to Install Canon Medical's Aquilion Precision
News | Computed Tomography (CT) | March 26, 2019
March 26, 2019 — Johns Hopkins Medicine now has access to the first...
NZ Technologies Announces First Peer-Reviewed Paper on TIPSO AirPad
News | Interventional Radiology | March 25, 2019
NZ Technologies Inc. announced the first published clinical review on its TIPSO technology’s ability to provide...
At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve).

At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve). Photo by Greg Freiherr

Feature | Cardiac Imaging | March 22, 2019 | By Greg Freiherr
Reflecting a trend toward the increased use of...