Feature | December 05, 2014

3-D Mammography Improves Cancer Detection in Dense Breasts

Study indicated adding tomosynthesis to full-field digital mammography improved cancer detection rate by 30 percent

3-D Mammography Improves Cancer Detection in Dense Breasts

December 5, 2014 — A major new study presented at the annual meeting of the Radiological Society of North America (RSNA) found that digital breast tomosynthesis, also known as 3-D mammography, has the potential to significantly increase the cancer detection rate in mammography screening of women with dense breasts.

Breasts are considered dense if they have a lot of fibrous or glandular tissue but not much fatty tissue. Research has shown that dense breasts are more likely to develop cancer, a problem compounded by the fact that cancer in dense breasts can be difficult to detect on mammograms.

Other imaging modalities like ultrasound and magnetic resonance imaging (MRI) are often used to help find cancers that can't be seen on mammograms, but both modalities have higher rates of false-positive findings. This higher false-positive rate often results in more tests and unnecessary biopsies, making MRI and ultrasound expensive to implement in high-volume screening programs, according to study lead author Per Skaane, M.D., Ph.D., from the department of radiology at Oslo University Hospital in Oslo, Norway.

Skaane and colleagues have been studying tomosynthesis as a promising breast cancer screening option that addresses some of the limitations of mammography by providing 3-D views of the breast.

"Tomosynthesis could be regarded as an improvement of mammography and would be much easier than MRI or ultrasound to implement in organized screening programs," Skaane said. "So the intention of our study was to see if tomosynthesis really would significantly increase the cancer detection rate in a population-based mammography screening program."

The researchers compared cancer detection using full-field digital mammography (FFDM) versus FFDM plus digital breast tomosynthesis in 25,547 women between the ages of 50 and 69. Breast density was classified based on the American College of Radiology's Breast Imaging-Reporting and Data System (BI-RADS). The BI-RADS breast density scale runs from 1 to 4, with 1 being the least dense and 4 being the most dense.

There were 257 malignancies detected on FFDM and a combination of FFDM and tomosynthesis in the study group, including 105 in the density 2 group and 110 in density 3. Of the 257 cancers, 211 — or 82 percent — were detected with FFDM plus tomosynthesis, a significant improvement over the 163 — or 63 percent — detected with FFDM alone.

FFDM plus tomosynthesis pinpointed 80 percent of the 132 cancer cases in women with dense breasts, compared to only 59 percent for FFDM alone.

"Our findings are extremely promising, showing an overall relative increase in the cancer detection rate of about 30 percent," Skaane said. "Stratifying the results on invasive cancers only, the relative increase in cancer detection was about 40 percent."

Tomosynthesis not only improved the cancer detection rate in women with dense breasts, it also helped increase detection for women in the "fatty breast" BI-RADS categories. The addition of tomosynthesis to FFDM improved the cancer detection rate from 68 percent to 84 percent in women with BI-RADS density 1 or 2 breasts.

For more information: www.radiologyinfo.org

Related Content

Illinois Governor Approves State Breast Density Reporting Bill Into Law
News | Breast Density | August 13, 2018
Illinois Gov. Bruce Rauner approved the Illinois Breast Density Reporting Law (Public Act 100-0749) on Aug. 10, 2018...
PET Tracer Identifies Estrogen Receptor Expression Differences in Breast Cancer Patients
News | PET Imaging | August 09, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the...
iCAD Receives FDA Clearance of PowerLook Density Assessment for Digital Breast Tomosynthesis
Technology | Breast Density | August 08, 2018
iCAD announced U.S. Food and Drug Administration (FDA) clearance of its latest artificial intelligence (AI) software...
Cardiac Imaging Reveals Roots of Preeclampsia Damage in Pregnant Women
News | Women's Health | August 07, 2018
Johns Hopkins researchers say a heart imaging study of scores of pregnant women with the most severe and dangerous form...
Cardiac Monitoring a Higher Priority for High-Risk Breast Cancer Patients
News | Cardio-oncology | August 07, 2018
August 7, 2018 — While heart failure is an uncommon complication of...
Hologic Acquires Digital Specimen Radiography Company Faxitron Bioptics

VisionCT 3-D breast specimen-designated computed tomography (CT) system. Image courtesy of Faxitron Bioptics.

News | Breast Imaging | July 31, 2018
Hologic Inc. announced it has completed the acquisition of Faxitron Bioptics, a privately-held leader in digital...
Konica Minolta Hosting Lunch and Learn at 23rd Annual Mammography Meeting in Santa Fe
News | Breast Imaging | July 31, 2018
Konica Minolta Healthcare Americas Inc. will sponsor a lunch and learn featuring its Exa Mammo platform during the 23rd...
FDA Approves New Tomosynthesis Quality Control Tests for ACR Digital Mammography QC Manual
News | Mammography | July 30, 2018
The U.S. Food and Drug Administration (FDA) recently approved the American College of Radiology’s (ACR’s) amendment to...
The Magtrace and Sentimag Magnetic Localization System uses magnetic detection during sentinel lymph node biopsy procedures to identify specific lymph nodes, known as sentinel lymph nodes, for surgical removal. The FDA granted approval of the Sentimag System to Endomagnetics Inc.

The  Endomagnetics' Magtrace and Sentimag Magnetic Localization System uses magnetic detection during sentinel lymph node biopsy procedures to identify specific lymph nodes, known as sentinel lymph nodes, for surgical removal.

Technology | Women's Health | July 24, 2018
July 24, 2018 — The U.S.
Overlay Init