News | Breast Imaging | March 02, 2022

‘Unabated’ adoption of technology could lead to over-treatment, excessive costs

Analyzing breast-cancer tumors with artificial intelligence has the potential to improve healthcare efficiency and outcomes. But doctors should proceed cautiously, because similar technological leaps previously led to higher rates of false-positive tests and over-treatment.

Getty Images


March 2, 2022 — Analyzing breast-cancer tumors with artificial intelligence has the potential to improve healthcare efficiency and outcomes. But doctors should proceed cautiously, because similar technological leaps previously led to higher rates of false-positive tests and over-treatment.

That’s according to a new editorial in JAMA Health Forum co-written by Joann G. Elmore, MD, MPH, a researcher at the UCLA Jonsson Comprehensive Cancer Center, the Rosalinde and Arthur Gilbert Foundation Endowed Chair in Health Care Delivery and professor of medicine at the David Geffen School of Medicine at UCLA.

“Without a more robust approach to the evaluation and implementation of AI, given the unabated adoption of emergent technology in clinical practice, we are failing to learn from our past mistakes in mammography,” the JAMA Health Forum editorial states. The piece, posted online Friday, was co-written with Christoph I. Lee, MD, MS, MBA, a professor of radiology at the University of Washington School of Medicine.

One of those “past mistakes in mammography,” according to the authors, was adjunct computer-aided detection (CAD) tools, which grew rapidly in popularity in the field of breast cancer screening starting more than two decades ago. CAD was approved by the FDA in 1998, and by 2016 more than 92% of U.S. imaging facilities were using the technology to interpret mammograms and hunt for tumors. But the evidence showed CAD did not improve mammography accuracy. “CAD tools are associated with increased false positive rates, leading to overdiagnosis of ductal carcinoma in situ and unnecessary diagnostic testing,” the authors wrote. Medicare stopped paying for CAD in 2018, but by then the tools had racked up more than $400 million a year in unnecessary health costs.

“The premature adoption of CAD is a premonitory symptom of the wholehearted embrace of emergent technologies prior to fully understanding their impact on patient outcomes,” Elmore and Lee wrote.

The doctors suggest several safeguards to put in place to avoid “repeating past mistakes,” including tying Medicare reimbursement to “improved patient outcomes, not just improved technical performance in artificial settings.”

For more information: https://cancer.ucla.edu/


Related Content

News | Bone Densitometry Systems

June 19, 2025 — Naitive Technologies has published results demonstrating the diagnostic performance of its AI-powered ...

Time June 18, 2025
arrow
News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
Feature | Women's Health | Christine Murray

In breast cancer detection, speed and accuracy are more than clinical goals – they can significantly increase chances ...

Time June 17, 2025
arrow
News | Digital Pathology

June 11, 2025 — Diagnostic laboratory leaders view digital pathology and artificial intelligence (AI) as pivotal to ...

Time June 12, 2025
arrow
News | Lung Imaging

June 11, 2025 — To prepare healthcare workforces and providers for an AI-driven future, Qure.ai has expanded its Global ...

Time June 11, 2025
arrow
News | Radiology Imaging

June 10, 2025 — CIVIE has announced the official launch of RadPod, an AI-driven, on-demand radiology platform designed ...

Time June 10, 2025
arrow
News | Ultrasound Imaging

June 4, 2025 — RadNet, Inc., a provider of high-quality, cost-effective diagnostic imaging services and digital health ...

Time June 09, 2025
arrow
News | Mammography

June 9, 2025 — A new independent, peer-reviewed study published in the journal Clinical Breast Cancer reinforces the ...

Time June 09, 2025
arrow
News | Imaging Software Development

June 05, 2025 — Nano-X Imaging Ltd. has announced that its deep-learning medical imaging analytics subsidiary, Nanox AI ...

Time June 05, 2025
arrow
News | Prostate Cancer

June 5, 2025 – Artera, the developer of multimodal artificial intelligence (MMAI)-based prognostic and predictive cancer ...

Time June 05, 2025
arrow
Subscribe Now