The study published as the front-page cover paper of the January issue of IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.​​​​​​​ Image courtesy of POSTECH

The study published as the front-page cover paper of the January issue of IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. Image courtesy of POSTECH


February 4, 2022 — A new diagnostic tool for breast cancer that combines two ultrasounds has been developed. A POSTECH research team led by Professor Chulhong Kim (belonging to the Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering), and Misra Sampa (Department of Convergence IT Engineering) has developed a breast cancer detecting deep learning model that combines grayscale B-mode and strain elastography (SE) ultrasound imaging.

Ultrasound imaging is not only considerably safer and less costly than other diagnostic methods – such as mammography, X-ray, or MRIs – but also enables in-depth observation of the tissues. Among them, the grayscale B-mode ultrasound that clearly shows the lesion structure and the strain elastography ultrasound that shows the tumor density are widely used for breast cancer classification. To this, Professor Kim’s team combined the two to maximize their strengths.

The study was conducted on 85 breast cancer patients including 42 with benign lesions and 43 with malignancies, all confirmed by biopsy. Two deep neural network models, AlexNet and ResNet, were separately trained on combined 205 grayscale and SE images from 67 patients with benign and malignant lesions.

The two deep learning models were then configured to work as an ensemble, and tested on a dataset of 56 images from the remaining 18 patients. This deep learning ensemble model identified diverse features present in the two different ultrasound images, and successfully detected the presence of malignant tumors.

The experimental results demonstrate that the accuracy of the deep learning ensemble model is 90%, which is higher than the individual models (84% each), and the model trained using grayscale B-mode or SE imaging (grayscale 77%, SE 85%) alone. In particular, while the individual model misclassified five patients, whereas the ensemble model only missed two.

Until now, ultrasound imaging was used in breast cancer classification but suffered from a shortage of radiologists and poor imaging quality. The deep learning model developed in this study enhances the accuracy of breast cancer diagnosis.

“Using this deep learning model can achieve superior detection efficiency since it can accurately classify breast cancers in ultrasound images,” explained Professor Chulhong Kim who led the study.

Featured as the front cover paper of IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, an international journal on ultrasound imaging, the study was conducted with the support from the Ministry of Education, Ministry of Science and ICT, and Ministry of Trade, Industry, and Energy of Korea.

For more information: http://international.postech.ac.kr/

Related POCUS Content:

VIDEO: Imaging COVID-19 With Point-of-Care Ultrasound (POCUS)

Utility of Point-of-Care Ultrasound Across Clinical Applications Spurs Continued Growth


Related Content

News | Orthopedic Imaging

Nov.10, 2025 — Medical imaging technology company Adaptix Ltd. has received 510(k) clearance from the U.S. Food and Drug ...

Time November 11, 2025
arrow
News | Artificial Intelligence

Nov. 6, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, recently announced that Volpara ...

Time November 07, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | RSNA 2025

Nov. 3, 2025 — QT Imaging Holdings has announced that its chief medical officer, Elaine luanow, MD, will host a seminar ...

Time November 04, 2025
arrow
News | Breast Imaging

Oct. 28, 2025 — QT Imaging Holdings, Inc., a medical device company focused on radiation-free imaging technology, has ...

Time October 28, 2025
arrow
Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | RSNA 2025

Oct. 7, 2025 – Clairity Inc., a leader in AI-based breast cancer risk prediction, will make five scientific ...

Time October 07, 2025
arrow
News | Mammography | Mayo Clinic

Early detection is key to breast cancer survival. But nearly half of all women in the U.S. have dense breast tissue ...

Time October 03, 2025
arrow
News | Proton Therapy

Sept. 28, 2025 — Leo Cancer Care has launched Grace, the company's upright photon therapy system. Grace is named after ...

Time October 03, 2025
arrow
Subscribe Now