News | Radiation Therapy | March 30, 2016

Findings are a promising step toward more effective and tailored treatments for people with cancer

radiation therapy, microRNA, miR-34, cell survival, UCLA study

March 30, 2016 — MicroRNA molecules were discovered only relatively recently in humans, but have been shown to play a pivotal role in how a cell responds to injury or stress, such as radiation therapy. A University of California Los Angeles (UCLA)-led study has for the first time shown that microRNAs, specifically the microRNA known as miR-34, can sit silently in an inactive state in a cell waiting for a signal to turn it on.

With radiation treatment currently used in over two-thirds of cancer patients, there remains a critical need for researchers and clinicians to better understand the genetics behind the radiation response and develop more personalized therapies for patients.

The discovery turns on its head the long-held notion that a microRNA when made is always already activated and ready to work, and shows for the first time that microRNAs can be controlled in a way similar to proteins, waiting for stress signals to turn them on.

The study was published online March 21 in the journal Nature Communications.

Joanne Weidhaas, M.D., the study's lead author and a UCLA Jonsson Comprehensive Cancer Center member, investigated numerous human cell lines. Her team found that there was an abundance of miR-34 in cells before radiation treatment, but that these molecules were inactive, or not functioning. It was only after radiation that the miR-34 sitting in the cells was activated, they discovered, and that a major radiation response protein called ATM was responsible.

It has been previously known that microRNA levels change immediately following radiation (often within the initial three to six-hour window), and that the level of miR-34 grows over time through the creation of new miR-34. However, the activation of an existing pool of miR-34 after radiation is an entirely new mechanism not previously discovered for any microRNA.

The research highlights the importance of miR-34 in the response to stress, and cancer treatment, Weidhaas said.

"This is a significant new insight into how we are wired for this response," said Weidhaas, a professor of radiation oncology at UCLA. "These findings have the potential to allow us to harness this mechanism to better treat patients with radiation, targeting tumors but protecting normal tissues. Or, we may in fact find that there are differences in how well this mechanism works in some people versus others, explaining why some are more radiosensitive or radio resistant from the start."

Weidhaas' team plans to further examine how miR-34 is created in a "deactivated" state in cells. The scientists also will assess the differences from patients receiving radiation therapy to help identify patient populations that are more likely to respond better to traditional therapy.

The research was supported by the National Institutes of Health.

For more information: www.nature.com/ncomms


Related Content

News | Women's Health

Nov. 3, 2025 — —A new radioimmunotherapy approach has the potential to cure human epidermal growth factor receptor 2 ...

Time November 04, 2025
arrow
Feature | Kyle Hardner

Radiotherapy contributes to about 40% of all cancer cures but still lags behind systemic therapy in funding and ...

Time October 21, 2025
arrow
News | Radiation Oncology

Sept. 02, 2025 — Alpha Tau Medical Ltd., the developer of the alpha-radiation cancer therapy Alpha DaRT has announced ...

Time September 05, 2025
arrow
News | Focused Ultrasound Therapy

Aug. 26, 2025 — In a quest for ever-more-effective treatments for pancreatic cancer, HonorHealth Research Institute is ...

Time August 29, 2025
arrow
News | Radiation Oncology

May 2, 2025 — GE HealthCare has announced an intended expansion of its radiation oncology portfolio as well as the ...

Time May 03, 2025
arrow
News | Radiology Education

April 21, 2025 — On June 20, the American Society of Radiologic Technologists (ASRT) will award Life Member status to ...

Time April 21, 2025
arrow
News | Radiology Business

April 16, 2025 — According to a new report, the U.S. Radiotherapy Market is projected to reach $2.49 billion by 2030 ...

Time April 17, 2025
arrow
News | ASTRO

March 14, 2025 — Another pivotal milestone in the nation’s fight against cancer recently took place with the ...

Time March 17, 2025
arrow
News | Computed Tomography (CT)

Royal Philips recently received 510(k) clearance from the US Food and Drug Administration (FDA) for its detector-based ...

Time November 13, 2024
arrow
News

Aug. 5, 2024 — Researchers from The University of Texas MD Anderson Cancer Center have demonstrated that adding ...

Time August 09, 2024
arrow
Subscribe Now