News | July 24, 2014

Scientists in London design new self-assembling nanoparticle that targets tumors, to help earlier cancer diagnosis

July 24, 2014 — Scientists have designed a new self-assembling nanoparticle that targets tumors, to help doctors diagnose cancer earlier. The new nanoparticle, developed by researchers at Imperial College London, boosts the effectiveness of magnetic resonance imaging (MRI) scanning by specifically seeking out receptors that are found in cancerous cells.

The nanoparticle is coated with a special protein, which looks for specific signals given off by tumors, and when it finds a tumor it begins to interact with the cancerous cells. This interaction strips off the protein coating, causing the nanoparticle to self-assemble into a much larger particle so that it is more visible on the scan.

A new study published in the journal Angewandte Chemie used cancer cells and mouse models to compare the effects of the self-assembling nanoparticle in MRI scanning against commonly used imaging agents. The study found the nanoparticle produced a more powerful signal and created a clearer MRI image of the tumor.

The scientists say the nanoparticle increases the sensitivity of MRI scanning and will ultimately improve doctors’ ability to detect cancerous cells at much earlier stages of development.

Nicholas Long, a professor from the department of chemistry at Imperial College London, said the results show real promise for improving cancer diagnosis. "By improving the sensitivity of an MRI examination, our aim is to help doctors spot something that might be cancerous much more quickly. This would enable patients to receive effective treatment sooner, which would hopefully improve survival rates from cancer."

"MRI scanners are found in nearly every hospital up and down the country, and they are vital machines used every day to scan patients' bodies and get to the bottom of what might be wrong. But we are aware that some doctors feel that even though MRI scanners are effective at spotting large tumors, they are perhaps not as good at detecting smaller tumors in the early stages," added Long.

The newly designed nanoparticle provides a tool to improve the sensitivity of MRI scanning, and the scientists are now working to enhance its effectiveness. Said Long: "We would like to improve the design to make it even easier for doctors to spot a tumor and for surgeons to then operate on it. We're now trying to add an extra optical signal so that the nanoparticle would light up with a luminescent probe once it had found its target, so combined with the better MRI signal it will make it even easier to identify tumors."

Before testing and injecting the non-toxic nanoparticle into mice, the scientists had to make sure that it would not become so big when it self-assembled that it would cause damage. They injected the nanoparticle into a saline solution inside a petri dish and monitored its growth over a four-hour period. The nanoparticle grew from 100 to 800 nanometers– still small enough to not cause any harm.

The scientists are now improving the nanoparticle and hope to test their design in a human trial within the next three to five years.

Juan Gallo, Ph.D., department of surgery and cancer, Imperial College London, said, "We're now looking at fine-tuning the size of the final nanoparticle so that it is even smaller but still gives an enhanced MRI image. If it is too small the body will just secrete it out before imaging, but too big and it could be harmful to the body. Getting it just right is really important before moving to a human trial."

For more information: www.imperial.ac.uk


Related Content

News | PET Imaging

April 24, 2024 — A new study from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare ...

Time April 24, 2024
arrow
News | Radiology Business

April 23, 2024 — A diverse writing group—lead by authors at the University of Toronto—have developed an approach for ...

Time April 23, 2024
arrow
News | FDA

April 18, 2024 — Lumicell, Inc., a privately held company focused on developing innovative fluorescence-guided imaging ...

Time April 18, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
News | Radiopharmaceuticals and Tracers

April 5, 2024 — RLS Radiopharmacies, America’s only Joint Commission-accredited radiopharmacy network, today announced ...

Time April 05, 2024
arrow
News | Radiology Business

April 4, 2024 — FUJIFILM Healthcare Americas Corporation, a leading provider of diagnostic and enterprise imaging ...

Time April 04, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | FDA

March 27, 2024 — SyntheticMR announced that its next-generation imaging solution, SyMRI 3D, has received FDA 510(k) ...

Time March 27, 2024
arrow
News | Breast Imaging

March 8, 2024 — Lumicell, Inc., a privately held company focused on innovative fluorescence-guided imaging technologies ...

Time March 08, 2024
arrow
News | Artificial Intelligence

March 1, 2024 — Royal Philips, a global leader in health technology, and magnetic resonance imaging (MRI) software ...

Time March 01, 2024
arrow
Subscribe Now