News | April 25, 2014

Findings may benefit certain cardiovascular patients on Earth, too

ACC.14 Astronauts Clinical Trial Cardiovascular Ultrasound

April 25, 2014 — New findings from a clinical study of 12 astronauts show the heart becomes more spherical when exposed to long periods of microgravity in space, a change that could lead to cardiac problems, according to research to be presented at the American College of Cardiology’s 63rd Annual Scientific Session.

With implications for an eventual manned mission to Mars, the findings represent an important step toward understanding how a spaceflight of 18 months or more could affect astronauts’ heart health.

“The heart doesn’t work as hard in space, which can cause a loss of muscle mass,” said James Thomas, M.D., Moore Chair of cardiovascular imaging and lead scientist for ultrasound at NASA, and senior author of the study. “That can have serious consequences after the return to Earth, so we’re looking into whether there are measures that can be taken to prevent or counteract that loss.”

The researchers say that knowing the amount and type of exercise astronauts need to perform to keep the heart healthy is going to be very important to guarantee their safety on a long flight like a mission to Mars. Thomas added that exercise regimens developed for astronauts could also be used to help maintain heart health in people on Earth who have severe physical limitations, such as people on extended bed rest or those with heart failure regime.

The research team trained astronauts to take images of their hearts using ultrasound machines installed on the International Space Station. Twelve astronauts participated, providing data on heart shape before, during and after spaceflight.

The results show the heart in space becomes more spherical by a factor of 9.4 percent, a transformation similar to what scientists had predicted with sophisticated mathematical models developed for the project. By validating those models, the study could also lead to a better understanding of common cardiovascular conditions in patients on Earth.

“The models predicted the changes we observed in the astronauts almost exactly. It gives us confidence that we can move ahead and start using these models for more clinically important applications on Earth, such as to predict what happens to the heart under different stresses,” Thomas said.

The team is now working to generalize the models to analyze such conditions as ischemic heart disease, hypertrophic cardiomyopathy and valvular heart disease.

“The models could help us simulate those pathologies to understand the impact on cardiac function,” Thomas said.

The astronauts’ more spherical heart shape appears to be temporary, with the heart returning to its normal elongated shape shortly after the return to Earth. The more spherical shape experienced in space may mean the heart is performing less efficiently, although the long-term health effects of the shape change are not known.

Spaceflight is known to cause a variety of cardiac effects. Upon return to Earth, astronauts commonly become lightheaded or pass out in a condition known as orthostatic hypotension, in which the body experiences a sudden drop in blood pressure when standing up. Arrhythmias have also been observed during space travel, and there is concern that the radiation astronauts are exposed to in space may accelerate atherosclerosis. The research team is continuing to examine these and other potential cardiovascular effects.

This study is funded by the National Space Biomedical Research Institute through NASA Cooperative Agreement NCC9-58.

For more information: www.CardioSource.org.


Related Content

News | Magnetic Resonance Imaging (MRI)

Jan. 27, 2026 — Hyperfine has announced results from the largest data set to date evaluating stroke detection with its ...

Time January 28, 2026
arrow
News | Radiology Education

Jan. 22, 2026—The American Roentgen Ray Society (ARRS) will host a live virtual symposium, "Medical Imaging for ...

Time January 28, 2026
arrow
News | Point-of-Care Ultrasound (POCUS)

Jan. 27, 2026 — Siemens Healthineers and World Athletics have joined forces to inform medical teams how point-of-care ...

Time January 27, 2026
arrow
News | PET Imaging

Jan. 26, 2026 — Nuclidium, a clinical-stage radiopharmaceutical company developing a proprietary copper-based ...

Time January 27, 2026
arrow
News | Radiology Imaging

Jan. 26, 2026 — Researchers at the University of Arizona were awarded up to $1.8 million by the Advanced Research ...

Time January 26, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
News | Focused Ultrasound Therapy

Dec. 19, 2025 — Washington University in St. Louis (WashU) has been recognized as a Focused Ultrasound Center of ...

Time December 23, 2025
arrow
News | Cardiac Imaging

Dec. 15, 2025 — Royal Philips has entered into an agreement to acquire SpectraWAVE, Inc., an innovator in enhanced ...

Time December 18, 2025
arrow
News | RSNA 2025

Oct. 31, 2025 — Echolight plans to demonstrate its bone density scanning technology at the Radiological Society of North ...

Time November 03, 2025
arrow
News | Cardiac Imaging

Oct. 24, 2025 —YorLabs, Inc., a medical technology company developing next-generation intracardiac imaging solutions for ...

Time October 27, 2025
arrow
Subscribe Now