June 15, 2007 - With a technology transfer agreement recently announced, the first compact proton therapy system, one that would fit in any major cancer center and cost a fifth as much as a full-scale machine is nearing reality thanks to scientists at Lawrence Livermore National Laboratory in a project jointly funded by the Laboratory and UC Davis Cancer Center.

Proton therapy is considered the most advanced form of radiation therapy available, but size and cost have limited the technology’s use to only six cancer centers nationwide.

In the new technology transfer pact, Lawrence Livermore National Laboratory has licensed the technology to TomoTherapy Incorporated of Madison, WI, through an agreement with the Regents of the University of California.

TomoTherapy will fund development of the first clinical prototype, which will be tested on patients at UC Davis Cancer Center. If clinical testing is successful, TomoTherapy will bring the machines to market. The compact system is expected to fit in standard radiation treatment suites and to cost less than $20 million. The compact system will be mounted on a gantry that rotates about the patient.

In addition to overcoming size and cost obstacles, the compact system will reportedly improve on existing full-scale systems by including the capability to vary the energy, intensity and “spot” size of the proton beam. Radiation will be produced in rapid pulses, creating small “spots” of dose throughout the tumor. Currently only one proton facility in the world, the Paul Scherrer Institute in Switzerland, is able to deliver this intensity-modulated proton therapy (IMPT). IMPT is generally considered the best way to destroy tumors while minimizing damage to surrounding healthy tissue.

For more information: www.llnl.gov or www.tomotherapy.com


Related Content

News | Treatment Planning

February 2, 2024 — RaySearch Laboratories announced that the number of radiotherapy centers that have chosen RayStation ...

Time February 02, 2024
arrow
Feature | Radiation Oncology | By Melinda Taschetta-Millane

Over the past several years, technological advancements have driven the development of more precise and targeted ...

Time January 16, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

January 11, 2024 — On January 9th, 2024, a scientific prototype for MRI-guided proton therapy was inaugurated in Dresden ...

Time January 11, 2024
arrow
News | Radiation Therapy

December 27, 2023 — Nationwide Children’s Hospital and The Ohio State University Comprehensive Cancer Center – Arthur G ...

Time December 27, 2023
arrow
Feature | Proton Therapy | By Christine Book

A University of Miami Radiation Oncology department summary noted: “In radiation oncology, the art of patient care meets ...

Time October 11, 2023
arrow
Videos | Proton Therapy

Tune in to ITN’s latest “One on One” video series with Michael Butkus, PhD, for insights into proton therapy ...

Time October 10, 2023
arrow
News | Proton Therapy

October 4, 2023 — RaySearch Laboratories AB has announced its expanded collaboration with P-Cure, aiming at enhancing ...

Time October 04, 2023
arrow
Feature | ASTRO | By Christine Book

September 26, 2023 — Ahead of the 65th American Society for Radiation Oncology Annual Meeting, ASTRO 2023, ITN’s ...

Time September 26, 2023
arrow
Feature | Proton Therapy | By Christine Book

An overview of significant developments in proton therapy, over just the past six months, reinforces the pace of ...

Time September 21, 2023
arrow
News | Radiation Therapy

August 30, 2023 — A published study by researchers at the University of Cincinnati Cancer Center and Cincinnati Children ...

Time August 30, 2023
arrow
Subscribe Now