News | Proton Therapy | December 17, 2015

First proton center fully dedicated to pediatric cancer will feature Hitachi system with spot scanning irradiation technology

Hitachi, St. Jude Children's Research Hospital, Red Frog Events Proton Therapy Center

December 17, 2015 — Hitachi Ltd. announced that St. Jude Children’s Research Hospital opened the St. Jude Red Frog Events Proton Therapy Center in Memphis, Tennessee, the world’s first proton therapy center solely dedicated to children. The new center has 190-degree half gantries that provide efficient and spacious treatment-room environments suited specifically for pediatric care. All rooms are equipped with spot-scanning irradiation, a technology for which Hitachi received the first U.S. Food and Drug Administration (FDA) Premarket Notification Special 510(k) clearance in 2007.

St. Jude will be Hitachi’s third proton therapy site in the United States.

“The opening of the St. Jude Red Frog Events Proton Therapy Center marks an important step in our efforts to provide therapies that maximize cures while minimizing long-term treatment complications,” said James R. Downing, M.D., St. Jude president and chief executive officer. “The center is an engineering marvel made possible through the talents of many who are committed to offering children with cancer the best hope for the future.”

Radiation therapy, used alone or in combination with surgery and chemotherapy, is an integral component for successfully managing and treating pediatric tumors. Proton therapy allows doctors to administer targeted, high-dose radiation while sparing surrounding healthy tissue from exposure.

Proton beam therapy is an advanced form of external beam radiotherapy in which the protons from a hydrogen atom are extracted and accelerated up to 70 percent the speed of light. The energy beam is concentrated directly on the tumor, minimizing radiation doses to the surrounding healthy tissues. The procedure has fewer side effects compared to traditional radiotherapy.

Spot-scanning irradiation technology does not scatter proton beams like conventional proton beam therapy does. Rather, it repeatedly turns a narrow proton beam on and off at high speed as it progressively changes location to irradiate entire tumor volumes. Protons can be aimed with high precision at targeted tumors, even those with complex shapes, while minimizing the impact on nearby healthy tissue.

For more information: www.hitachi.com


Related Content

News | Artificial Intelligence

March 28, 2024 — As artificial intelligence (AI) makes its way into cancer care – and into discussions between ...

Time March 28, 2024
arrow
News | Prostate Cancer

March 27, 2024 — A minimally invasive treatment using MRI and transurethral ultrasound instead of surgery or radiation ...

Time March 27, 2024
arrow
Videos | Radiation Oncology

In the conclusion of this 3-part video series on recent advancements in diagnostic radiology, current editorial advisory ...

Time March 19, 2024
arrow
News | Breast Imaging

March 18, 2024 — QT Imaging Holdings, Inc., a medical device company engaged in research, development, and ...

Time March 18, 2024
arrow
Feature | Radiation Oncology | By Christine Book

Appreciating the considerable advances in the clinical application of artificial intelligence (AI) within healthcare ...

Time March 06, 2024
arrow
News | FDA

March 1, 2024 — Varian, a Siemens Healthineers company, announced that it has received 510(k) clearance from the U.S ...

Time March 01, 2024
arrow
News | Breast Imaging

February 22, 2024 — The FAST-Forward randomized trial from the UK found that ultrahypofractionated whole breast ...

Time February 22, 2024
arrow
News | Radiation Oncology

February 22, 2024 — The National Institutes of Health has launched a clinical trials network to evaluate emerging ...

Time February 22, 2024
arrow
News | Radiation Oncology

February 14, 2024 — Accuray Incorporated announced that the team at Quebec’s Montérégie Integrated Cancer Center, part ...

Time February 14, 2024
arrow
News | Radiation Oncology

February 12, 2024 — Radformation, a global pioneer in radiation oncology software solutions, is pleased to announce its ...

Time February 12, 2024
arrow
Subscribe Now