News | April 01, 2011

Researchers Target Tumor Metabolism by Blocking Energy Production Required for Cancer Growth

April 1, 2011 – The growth and spread of breast cancer tumors may be delayed with a promising treatment that combines two innovative strategies: blocking the enzyme needed to "energize" cancer cells and infusing a potent drug directly into the tumor. The treatment, which minimizes exposure to healthy tissues, was reported by researchers at the Society of Interventional Radiology's (SIR) 36th Annual Scientific Meeting in Chicago.

"Once breast cancer metastases have been detected, current treatments, such as surgical resection or tumor removal, may be ineffective,” said Jeff H. Geschwind, M.D., FSIR, professor of radiology, surgery and oncology and director of vascular and interventional radiology at Johns Hopkins University School of Medicine in Baltimore. “We've found a way to keep a breast cancer tumor dormant—thus potentially increasing the likelihood that a tumor can be treated successfully. Our study shows that an ultrasound-guided intra-tumoral treatment with a drug called 3-bromopyruvate (3-BrPA) may be a very promising new therapy for patients with breast cancer that delays tumor growth and spread."

Increased awareness and screening has increased the likelihood of diagnosing early-stage cancer tumors, and breast cancer is treated in several ways, depending on the kind of breast cancer and how far it has spread, said Geschwind.

"However, a significant number of patients experience treatment failure, developing local tumor recurrence or metastatic disease after an initial response to treatments like chemotherapy and radiation," he explained. "Metastatic spread may occur in 50 percent of cases with apparently localized breast cancer, and nearly 30 percent of patients with lymph node-negative disease will develop distant metastases within five years—underlining the importance of the development of novel, targeted, minimally invasive treatment strategies for tumor control and prevention.”

In animal studies, the research team has shown how interventional radiologists are uniquely positioned to combine their basic science knowledge—in this case resulting in the exploitation of tumor metabolism as a target for breast cancer therapy—with their vast experience in minimally invasive treatment strategies.

"Breast tumor cells depend on a metabolic pathway called glycolysis to generate the energy required for their malignant growth. By inhibiting a specific enzyme with the anti-glycolytic agent 3-BrPA, the energy production required for tumor cell growth and spread is blocked," said Geschwind. "Disrupt glycolysis and cancer cells are unable to produce enough energy to survive," he said.

The researchers were then able to maximize the amount of drug delivered to a tumor by infusing the potent drug directly into the tumor—using imaging to guide them—and minimizing exposure of healthy tissue to the therapy.

"The biological targeting abilities of anti-glycolytic treatment combined with an image-guided minimally invasive delivery strategy is a promising approach to reducing the growth and spread of breast cancer in patients," said Geschwind.

"In our study, a statistically significant difference in tumor volume was observed. Our results support the continuing development of this highly innovative interventional radiology approach for the safe and effective treatment of breast cancer," he added. "Before we can test our novel treatment strategy in individuals with breast cancer, it is important to perform additional animal studies of a larger size to confirm the efficacy of the treatment and to verify that there are no toxic effects on the normal tissues."

For more information: www.SIRweb.org

Related Content

Videos | Mammography | December 10, 2018
Stamatia Destounis, M.D., FACR, associate professor, University of Rochester School of Medicine, and attending radiol
FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis
Technology | Mammography | December 07, 2018
iCAD Inc. announced clearance by the U.S. Food and Drug Administration (FDA) for their latest, deep-learning, cancer...
Fujifilm Collaborates With Lunit on AI Pilot Project
News | Artificial Intelligence | December 05, 2018
Fujifilm Medical Systems USA Inc. announced a joint collaboration with Korean-based medical artificial intelligence (AI...
ScreenPoint Medical and Volpara Partner to Bring AI to Breast Imaging Clinics
News | Computer-Aided Detection Software | December 04, 2018
ScreenPoint Medical has signed a memorandum of understanding (MOU) with Volpara Health Technologies. Volpara will...
GE Healthcare Introduces Invenia ABUS 2.0
Technology | Ultrasound Women's Health | December 03, 2018
GE Healthcare recently launched the Invenia automated breast ultrasound (ABUS) 2.0 system in the United States. This...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
ScreenPoint Medical Receives FDA Clearance for Transpara Mammography AI Solution
Technology | Computer-Aided Detection Software | November 28, 2018
November 28, 2018 — ScreenPoint Medical announced it has received 510(k) clearance from the U.S.
Women Benefit From Mammography Screening Beyond Age 75
News | Mammography | November 26, 2018
Women age 75 years and older should continue to get screening mammograms because of the comparatively high incidence of...
Arterys Demonstrates AI Cloud-Based Medical Image Analysis Solutions at RSNA 2018
News | Computer-Aided Detection Software | November 26, 2018
Medical imaging software company Arterys will demonstrate its wide-ranging suite of artificial intelligence (AI)-...
Novarad Debuts NovaMG-Pro Mammography Software at RSNA 2018
News | Mammography Reporting Software | November 25, 2018
Novarad Corp. announced new mammography software NovaMG-Pro, specifically for multimodality radiologists that read...