Technology | July 22, 2014

Radyalis Releases Next-Generation Monte Carlo Proton Therapy Planning

Radyalis Releases Next-Generation Monte Carlo Proton Therapy Planning

July 22, 2014 — Radyalis is showcasing its high-performance Monte Carlo dose calculation product for proton applications simultaneously at the 2014 annual meeting of the American Association of Physics in Medicine (AAPM) in Austin, Texas.

The company’s work in large-scale optimization and high-performance computing enables clinicians to utilize the high-accuracy benefits of Monte Carlo at unprecedented speeds for proton therapy dose modeling. The Monte Carlo engine changes radiotherapy workflow as the most complex patient treatment plans can be evaluated for efficacy and biological safety with high confidence in a matter of minutes.

The technology combines new algorithmic and software architecture advances for very high parallel efficiency on customer's existing hardware, including single and multiple node installations, clusters and cloud platforms, for both Linux and Windows environments. Radyalis software is highly portable and very flexible, and designed to be integrated via a customer API or into a treatment planner.

Without compromise, Monte Carlo supports a robust set of features. All relevant physics are accurately modeled. Simulation of complex geometries, NIST materials and multiple beams are fully supported. Radyalis provides sophisticated dosage statistics including particle distributions, variability, fluence and linear energy transfer, further guiding the radiation physicist.

The fast and accurate Monte Carlo dose calculator is a key enabler for next-generation treatment plan optimization, robust planning, quality assurance and ultimately real-time adaptive planning. The speed and accuracy of Radyalis' Monte Carlo product provides significant ROI advantages for equipment manufacturers, treatment centers and research organizations.

For more information: www.radyalis.com

Related Content

Global radiotherapy market revenue is set to expand from $7,222.4 million in 2019 to $17,194.4 million by 2030, at an 8.4% CAGR between 2020 and 2030, the key factor driving the market growth is the increasing number of cancer cases, according to the report published by P&S Intelligence.

Image courtesy of Elekta

News | Radiation Therapy | August 06, 2020
August 6, 2020 — Global ...
Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly welcomes Siemens Healthineers AG’s acquisition of a 100 percent stake in Varian Medical Systems, Inc., a U.S. company active in the area of cancer research and therapy.

Getty Images

News | Radiology Business | August 03, 2020
August 3, 2020 — Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly wel
JAMA Oncol. Published online  July 30, 2020. doi:10.1001/jamaoncol.2020.2783

Table 1. JAMA Oncol. Published online  July 30, 2020. doi:10.1001/jamaoncol.2020.2783

News | Coronavirus (COVID-19) | July 31, 2020
July 31, 2020 — An article published in JAMA...
It has been estimated that the overwhelming focus on COVID-19 could cause up to 35,000 excess cancer deaths in the UK during the next 12 months, and  Zegami, the Oxford University data visualization spin-out which has worked on several projects focused on the detection, diagnosis, or management of cancer, is calling for greater use of technology to speed up the process of diagnosis and treatment.

Getty Images

News | Radiation Oncology | July 29, 2020
July 29, 2020 — It has been estimated that the overwhelming focus on...
In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
World's largest radiation oncology meeting will offer full conference on interactive platform October 25-28, 2020
News | ASTRO | July 09, 2020
July 9, 2020 — Registration opens today for the American Society for Radiation Oncology's (...
At the American Association of Physicists in Medicine (AAPM) 2019 meeting, new artificial intelligence (AI) software to assist with radiotherapy treatment planning systems was highlighted. The goal of the AI-based systems is to save staff time, while still allowing clinicians to do the final patient review. 
Feature | Treatment Planning | July 08, 2020 | By Melinda Taschetta-Millane
At the American Association of Physicists in Medicine (AAPM) 201
Radiotherapy has been used to treat cancers for more than a century and continues to be utilized in cancer treatment plans today. Since the introduction of radiotherapy, clinicians have been working tirelessly to further refine treatments to better target cancer.
Feature | Radiation Therapy | July 06, 2020 | By Yves Archambault
Everything has room for improvement, right? Right. When it comes to cancer care, it is no different.