Technology | July 22, 2014

Radyalis Releases Next-Generation Monte Carlo Proton Therapy Planning

Radyalis Releases Next-Generation Monte Carlo Proton Therapy Planning

July 22, 2014 — Radyalis is showcasing its high-performance Monte Carlo dose calculation product for proton applications simultaneously at the 2014 annual meeting of the American Association of Physics in Medicine (AAPM) in Austin, Texas.

The company’s work in large-scale optimization and high-performance computing enables clinicians to utilize the high-accuracy benefits of Monte Carlo at unprecedented speeds for proton therapy dose modeling. The Monte Carlo engine changes radiotherapy workflow as the most complex patient treatment plans can be evaluated for efficacy and biological safety with high confidence in a matter of minutes.

The technology combines new algorithmic and software architecture advances for very high parallel efficiency on customer's existing hardware, including single and multiple node installations, clusters and cloud platforms, for both Linux and Windows environments. Radyalis software is highly portable and very flexible, and designed to be integrated via a customer API or into a treatment planner.

Without compromise, Monte Carlo supports a robust set of features. All relevant physics are accurately modeled. Simulation of complex geometries, NIST materials and multiple beams are fully supported. Radyalis provides sophisticated dosage statistics including particle distributions, variability, fluence and linear energy transfer, further guiding the radiation physicist.

The fast and accurate Monte Carlo dose calculator is a key enabler for next-generation treatment plan optimization, robust planning, quality assurance and ultimately real-time adaptive planning. The speed and accuracy of Radyalis' Monte Carlo product provides significant ROI advantages for equipment manufacturers, treatment centers and research organizations.

For more information: www.radyalis.com

Related Content

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
The global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at a CAGR of 3.38%, over the period 2020-2024.
News | Proton Therapy | May 20, 2020
May 20, 2020 — ResearchAndMarkets.com has released its latest report, the ...
An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

USask PhD bio-medical engineering student Farley Chicilo at the Canadian Light Source synchrotron at University of Saskatchewan. Photo courtesy of Canadian Light Source, University of Saskatchewan

News | Radiation Therapy | May 14, 2020
May 14, 2020 — An innovative radiation treatment t
Medical University of South Carolina researchers have developed and validated prediction tools, known as nomograms, that could be used to help prevent delays in the initiation of radiotherapy after surgery for head and neck cancer

 

Evan Graboyes, M.D., and his team believe their nomogram tools will improve survival rates for head and neck cancer patients. Photo courtesy of MUSC Hollings Cancer Center

 

News | Radiation Oncology | May 14, 2020
May 14, 2020 — More than 65,000 Americans are diagnosed annually with head and neck cancer, which most often occurs i
Due to ongoing health concerns related to the spread of the Coronavirus (COVID-19) as well as global travel restrictions, the American Association of Physicists in Medicine (AAPM) has decided to evolve the Joint AAPM/COMP (Canadian Organization of Medical Physicists) Meeting content into a virtual (completely online) meeting in place of the in-person meeting originally scheduled for July 12-16, 2020, in Vancouver, BC.
News | AAPM | May 11, 2020
May 11, 2020 — Due to ongoing health concerns related to the spread of the Coronavirus (...
Figure 1: CT image of lesions in different planes

Figure 1: CT image of lesions in different planes.

Sponsored Content | Case Study | Radiation Oncology | April 30, 2020 | By Christopher Bowen, M.S., DABR
360 Photos | 360 View Photos | April 30, 2020
The company .decimal at ASTRO showed a 3-D prin
Two-dimensional (2D) Ruddlesden-Popper phase layered perovskites (BA)2(MA)2Pb3I10 with three layers of inorganic octahedral slab and bulky organics as spacers

Two-dimensional (2D) Ruddlesden-Popper phase layered perovskites (BA)2(MA)2Pb3I10 with three layers of inorganic octahedral slab and bulky organics as spacers. Image courtesy of Dave Tsai/Los Alamos

News | X-Ray | April 24, 2020
April 24, 2020 — Getting an X-ray at the dentist or