News | March 31, 2009

Novel Lantheus PET MPI Tracer Well Tolerated, Safe

March 31, 2009 – Lantheus Medical Imaging Inc. reported that its novel fluorine 18-labeled positron emission tomography (PET) tracer for myocardial perfusion imaging in subjects under rest and stress conditions is well-tolerated and demonstrates radiation dosimetry that is comparable to or less than that of other PET agents, according to Phase I data on the safety and tolerability of BMS747158 presented at ACC09.

Principal Investigator, Jamshid Maddahi, M.D., F.A.C.C., professor of molecular and medical pharmacology (Nuclear Medicine) and medicine (Cardiology) at the David Geffen School of Medicine at UCLA and principal investigator of the study. presented the poster (abstract number 1054-263) said the data also showed high myocardial uptake at rest that significantly increases with pharmacologically induced stress and a ratio of myocardial to background radioactivity that is favorable and improved over time. These findings suggest that BMS747158 has strong potential as a myocardial perfusion PET imaging agent for patients both at rest and under stress.

“These data raise hope that BMS747158 could help address the need for a radiopharmaceutical that provides greater accuracy and broadens the applicability of PET technology for myocardial perfusion imaging,” said Dr. Maddahi. “These studies found that the mean effective dose of BMS747158 was very similar to that of a commonly used F-18 labeled agent, FDG, but the radiation level absorbed by the organ receiving the highest dose was significantly lower with BMS 747158.”

The Phase I clinical trials were designed to evaluate human safety, dosimetry (the dose of radiation absorbed by the body), biodistribution and myocardial imaging characteristics of BMS747158 in healthy subjects under rest and stress conditions. Thirteen subjects were injected with 222 MBq intravenously at rest in one study. In a second Phase I study, twelve additional subjects received 93 MBq BMS747158 intravenously at rest and 127 MBq under stress (either induced pharmacologically using adenosine infusion or using exercise on a treadmill) the following day. Imaging of the heart using PET technology was conducted for 10 minutes, followed by sequential cardiac and whole body imaging. Extensive safety monitoring was conducted with physical exams, clinical lab testing, ECG, EEG, blood chemistry and vital signs assessments before and after the injections.

Preliminary results of these Phase I studies show that no adverse events attributed to BMS747158 were reported. Preliminary results also show that the mean effective dose (ED, a relative measure of the long-term risk due to radiation exposure) was estimated to be 0.019 mSv/MBq at rest and pharmacological stress and 0.015 mSv/MBq under exercise stress. While the ED of BMS747158 was very similar to the ED for FDG, a commonly used F-18 labeled PET imaging agent, the dose to the organ receiving the highest dose was lower by a factor of 2.5 at rest and 1.8 under stress. Preliminary biodistribution results showed high myocardial uptake at rest that increased significantly with adenosine-induced stress. The ratio of myocardial to liver radioactivity reached a maximum of approximately 1, 2 and 5 at 20 minutes following injection for rest, pharmacological stress and exercise stress respectively and was stable (for exercise stress) or improved markedly thereafter.

“These studies found that BMS747158 has high myocardial uptake among patients at rest and under stress, which points to its potential in PET myocardial perfusion PET imaging. Combined with the findings that BMS747158 is well-tolerated in the studied population, these are very encouraging data that we will aim to replicate in additional broader studies,” said D. Scott Edwards, Ph.D., vice president, Global R&D, Lantheus Medical Imaging, Inc. “Lantheus is committed to developing innovative imaging agents that provide physicians with improved options for diagnosing and managing their patients.”

Findings of preclinical studies describing this novel agent’s promise for use in combination with PET imaging were published in The Journal of Nuclear Cardiology (JNC) and The Journal of Nuclear Medicine (JNM).

For more information, visit www.lantheus.com

Related Content

Voyageur Minerals to Begin Manufacturing Barium Contrast Products With Chief Medical Supply
News | Contrast Media | November 14, 2018
Voyageur Minerals Ltd. signed a joint venture agreement with Chief Medical Supply Ltd (CM) of Calgary, Alberta to...
Osprey Medical and GE Healthcare Launch Acute Kidney Injury Educational Program
News | Angiography | September 25, 2018
September 21, 2018 — Osprey Medical announced a collaboration with GE Healthcare on Osprey’s Be Kind to Kidneys campa
Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Contrast Media | September 12, 2018
In February 2018, a workshop was held at the National Institutes of Health (NIH) in Bethesda, Maryland, to explore co
Scientists Develop New MRI Tool for Cancer Diagnosis and Therapy

Researchers in the laboratory ‘Biomedical Nanomaterials’ of NUST MISIS. Image courtesy of PR Newsfoto/NUST MISIS.

News | Oncology Diagnostics | August 24, 2018
A European research group has developed a system that allows doctors to both improve the accuracy of diagnosing...
Iron Outperforms Gadolinium as MRI Contrast Agent

Scientists at Rice's Laboratory for Nanophotonics added iron chelates (blue) and fluorescent dye (red) to multi-layered gold nanomatryoshkas to create particles that can be used for disease therapy and diagnostics. The "theranostic" nanoparticles have a core of gold (left) that is covered by silica containing the diagnostic iron and dye, which is covered by an outer shell of gold. The particles are about 20 times smaller than a red blood cell, and by varying the thickness of the layers, LANP scientists can tune the nanomatryoshkas to convert light into cancer-killing heat. (Image courtesy of Luke Henderson/Rice University)

News | Contrast Media | August 22, 2018
Rice University nanoscientists have demonstrated a method for loading iron inside nanoparticles to create magnetic...
Guerbet Partners With Imalogix on Dose Optimization With Artificial Intelligence
News | Radiation Dose Management | August 14, 2018
August 14, 2018 — Guerbet LLC USA announced a commercial partnership with Imalogix, a provider of...
Videos | Contrast Media | August 03, 2018
Lawrence Tanenbaum, M.D., FACR, vice president and director of advanced imaging at RadNet, discusses the latest resea
Guerbet, IBM Watson Health Partner on Artificial Intelligence for Liver Imaging
News | Clinical Decision Support | July 10, 2018
Guerbet announced it has signed an exclusive joint development agreement with IBM Watson Health to develop an...
Imaging agent helps predict success of lung cancer therapy
News | Oncology Diagnostics | March 08, 2018
March 8, 2018 – Doctors contemplating the best therapy for...
OptiStar Elite injector
Feature | Contrast Media Injectors | March 07, 2018 | Grand View Research Inc.
The global contrast media injectors market is expected to reach $1.4 billion by 2025, growing at a compound annual...