Dr. Monowar Aziz (left), Dr. Ping Wang (middle) and Dr. Max Brenner (right) recently received a $3.8 million grant to study sepsis and radiation. (Credit: Northwell Health)

 

Dr. Monowar Aziz (left), Dr. Ping Wang (middle) and Dr. Max Brenner (right) recently received a $3.8 million grant to study sepsis and radiation. (Credit: Northwell Health) 


August 24, 2022 — Terrorism, acts of war, nuclear power plant malfunctions; the risk of massive radiation exposure is ever-present. Scientists from The Feinstein Institutes for Medical Research have been awarded a five-year, $3.8 million grant from the National Institutes of Health (NIH) to study how radiation affects the human body’s immune system and how to better treat sepsis in people who have been exposed to radiation injury. 

The novel research, led by Feinstein Institutes’ co-principal investigators Ping Wang, MD, Max Brenner, MD, PhD, and Monowar Aziz, PhD, will unravel the effects radiation has on immune cells, including neutrophils and macrophages, and how the body responds – or fails to respond – to invading bacteria, resulting in sepsis. The results may shed new insights into medical countermeasures for victims of major radiation exposure with or without sepsis. 

Sepsis occurs when the body’s immune system triggers inflammation to help fight against infection; if out of control, this inflammatory response can cause damage to multiple organ systems and often leads to death. 

“If you are exposed to radiation, your immune system is then weakened and it’s difficult for your body to fight off infection,” said Dr. Wang, professor and chief scientific officer at the Feinstein Institutes. “With the support of the NIH, we hope to find molecular targets in a body that has been exposed to radiation that could be used to boost the immune system so that complications, like sepsis, could be fought off.” 

Specifically, the new study will examine the role of extracellular cold-inducible RNA-binding protein (eCIRP), an alarm molecule released during sepsis that causes immune dysfunction. The team observed that radiation exposure increases the release of eCIRP and that deficiency of eCIRP improves survival. In the new research, Drs. Wang, Aziz, and Brenner will explore the possibility of inhibiting eCIRP to ultimately counter immune system dysfunction in victims of major radiation exposure. 

“Radiation exposure can cripple the immune system, so there is a significant need to understand how this occurs,” said Kevin J. Tracey, MD, president and CEO of the Feinstein Institutes. “The NIH support of Drs. Wang, Aziz, and Brenner offer a significant new opportunity to better understand the impact of radiation and the risks of subsequent immunosuppression and infection.” 

Sepsis affects at least 1.7 million Americans annually, causing the death of 270,000 patients and 30 percent of all hospital deaths. The Feinstein Institutes continues to lead in research to study the molecular mechanisms of sepsis to develop treatments. Most recently, Dr. Wang also received a $2.5 million grant from the NIH to study how neutrophils, a type of white blood cell, interact with eCIRP. 

 

For more information: http://feinstein.northwell.edu 


Related Content

News | Radiation Therapy

Feb. 4, 2026 — On World Cancer Day (02.04.26), the American Society for Radiation Oncology (ASTRO) and the European ...

Time February 04, 2026
arrow
News | Radiology Imaging

Feb. 4, 2026 — The Royal College of Radiologists (RCR) has issued its initial reaction to the British government's ...

Time February 04, 2026
arrow
News | Radiopharmaceuticals and Tracers

Jan. 29, 2026 — The American Society for Radiation Oncology (ASTRO) has launched a national program creating Authorized ...

Time January 30, 2026
arrow
News | Radiation Oncology

Jan. 27, 2026 — Researchers at the Icahn School of Medicine at Mount Sinai, in collaboration with other leading ...

Time January 29, 2026
arrow
News | Radiology Imaging

Jan. 21, 2026 — Cathpax, a spin-off of the Lemer Pax group that designs, develops and commercializes team-wide, full ...

Time January 22, 2026
arrow
News | Radiation Therapy

Jan. 16, 2026 — Elekta has announced that its Elekta Evo* CT-Linac has received 510(k) clearance from the U.S. Food and ...

Time January 16, 2026
arrow
News | Radiopharmaceuticals and Tracers

Dec. 11, 2025 — Telix Pharmaceuticals Ltd. has announced a strategic clinical collaboration with Varian, a Siemens ...

Time December 11, 2025
arrow
News | FDA

Dec. 02, 2025 — Alpha Tau Medical Ltd., the developer of the alpha-radiation cancer therapy Alpha DaRT, has announced ...

Time December 04, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
News | Radiology Business

Nov. 12, 2025 — Siemens has announced plans to deconsolidate its remaining stake in Siemens Healthineers (currently ...

Time November 13, 2025
arrow
Subscribe Now