News | February 13, 2013

New Radiation Oncology Device Reduces Treatment Times, Increases Safety

multi-leaf collimator (MLC) system

With radiation oncology treatments, the goal is to hit the tumor with as much ionizing X-ray energy as possible, while sparing adjacent, healthy tissue. The UC Davis Comprehensive Cancer Center has taken a major step toward that goal as one of the first sites in North America to install a sophisticated new multi-leaf collimator (MLC) system on its medical linear accelerators.

The MLC system precisely focuses high-energy, megavoltage x-ray beams that increase doses to tumors and minimize doses nearby. The 160-leaf collimator also allows radiation oncologists to customize the therapeutic beams to conform to a tumor’s shape and size. For patients, the highly conformal treatments mean fewer side effects and less time on the treatment table

With its increased leaf speed and advanced reliability and monitoring of leaf position, the new system will be used to treat a wide variety of diseases, including prostate, breast and lung cancers, as well as for highly specialized treatments such as stereotactic body radiosurgery,

“This system is safe, reliable, accurate and fast,” said Stanley Benedict, chief of clinical physics in the UC Davis Department of Radiation Oncology. “It’s great technology for our patients.”

The collimator is the latest weapon in the NCI-designated cancer center’s treatment options. The system complements other sophisticated radiation oncology technologies already established at UC Davis, such as Gamma Knife radiosurgery, image-guided radiotherapy and high-dose-rate brachytherapy, which pinpoint tumors and avoid healthy tissue.

Multi-leaf collimators act like high-tech lenses, focusing radiation beams and conforming them to the shape of an individual’s unique tumor. With its 160 tungsten leaves and larger field size (40 centimeters by 40 centimeters), the new device can precisely target tumors both large and tiny. This versatility is particularly helpful when treating head and neck and other complicated tumors surrounded by normal tissue.

The new device is accurate to within .01 millimeters, allowing oncologists to conform treatments to tumors with the utmost precision.

In addition to the MLC, a new software package precisely controls the leaves to ensure that the beam aligns tightly to the target. The software also can move individual leaves as quickly as 6 cm per second. The collimator’s high speed is ideal for radiation dose control and for arc-based treatments, in which a linear accelerator gantry rotates around the patient while simultaneously conforming to the tumor from different angles and continuously shaping the radiation beam.

“This is a very safe system,” said Richard Valicenti, chair of the Department of Radiation Oncology. “And because it’s so fast, we can reduce individual treatment times from between 25 and 50 percent.”

The system also can “interdigitate,” a process that helps radiation oncologists target multiple, tiny areas with different doses. “It’s the equivalent of painting by numbers,” said Benedict. “We can paint in certain doses to specific parts of the body.”

It will also be ideal to conduct stereotactic body radiotherapy, which delivers higher doses in fewer treatments.

“Stereotactic treatments tend to be longer because they’re larger fraction sizes,” said Valicenti. “Now we can do these treatments with shorter durations. The technology might also allow for fewer treatments.”

The collimator, called Agility, and controlling system, called Integrity, was manufactured by Elekta, a global company based in Stockholm, Sweden that develops tools, treatment planning systems and software programs for radiation therapy, radiosurgery and brachytherapy.

UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 9,000 adults and children every year, and access to more than 150 clinical trials at any given time. Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations.

For more information:

Related Content

ASTRO Issues Clinical Guideline for Whole Breast Radiation Therapy
News | Radiation Therapy | March 12, 2018
The American Society for Radiation Oncology (ASTRO) today issued a new clinical guideline for the use of whole breast...
MD Anderson and RaySearch Partner to Advance Adaptive Radiation Therapy
News | Treatment Planning | February 26, 2018
The University of Texas MD Anderson Cancer Center and RaySearch Laboratories announced a new strategic alliance with...
Mirada Medical Releases DLCExpert for Radiotherapy Treatment Planning
Technology | Treatment Planning | February 22, 2018
February 22, 2018 — U.K.-based medical imaging software provider Mirada Medical has released DLCExpert, the first com
Mitchell Cancer Institute Selects RayStation for TomoTherapy Planning
News | Treatment Planning | February 16, 2018
The University of South Alabama Mitchell Cancer Institute (MCI) in Mobile, Ala., has selected RayStation as its...
Radiography Education Enrollment Shows Marginal Rise in 2017
News | Business | February 15, 2018
Directors of radiography educational programs report the number of enrolled students increased slightly in 2017, while...
Varian Acquires Mobius Medical Systems
News | Quality Assurance (QA) | February 06, 2018
February 6, 2018 – Varian announced it has acquired privately-held Mobius Medical Systems, a...
Microbubbles Make Breast Cancer More Susceptible to Radiation Therapy
News | Women's Health | February 01, 2018
February 1, 2018 – Injecting breast cancer with oxygen-filled microbubbles makes tumors three-times more sensitive to
​ITN Celebrates World Cancer Day 2018
News | Radiation Oncology | February 01, 2018
World Cancer Day takes place annually on Feb.
RayStation Selected for India’s First Proton Center
News | Proton Therapy | February 01, 2018
February 1, 2018 – Apollo Hospitals, Asia´s foremost integrated healthcare provider, has selected RayStation for a ne
Overlay Init