News | August 14, 2014

New Imaging Agent Provides Better Picture of the Gut

Applying a method that uses nanoparticles to create visual contrast, a researcher created the above photoacoustic image of a mouse intestine. The colors indicate the depth of the intestine (red: deep blue: shallow). Photo courtesy Jonathan Lovell.

August 14, 2014 — A multi-institutional team of researchers has developed a new nanoscale agent for imaging the gastrointestinal (GI) tract. This safe, noninvasive method for assessing the function and properties of the GI tract in real time could lead to better diagnosis and treatment of gut diseases.

Illnesses such as small bowel bacterial overgrowth, irritable bowel syndrome and inflammatory bowel disease all occur in the intestine and can lead to serious side effects in patients with diseases such as diabetes and Parkinson’s. Until now, there has yet to be an effective way to functionally image the intestine. However, in a paper published July 6 in the journal Nature Nanotechnology, the researchers demonstrated that through a complementary approach using photoacoustic imaging and positron emission tomography (PET), they have created a multimodal functional imaging agent that could be used to perform noninvasive functional imaging of the intestine in real time.

Weibo Cai, an associate professor of radiology, medical physics and biomedical engineering at the University of Wisconsin-Madison, worked collaboratively with Jonathan Lovell, an assistant professor of biomedical engineering at the State University of New York at Buffalo, and Chulhong Kim, an assistant professor of creative information technology engineering at Pohang University of Science and Technology in South Korea. The team developed a family of nanoparticles that can provide good optical contrast for imaging, yet avoid absorption into the body and withstand the harsh conditions of the stomach and intestine.

Currently, patients drink barium and technicians view the intestine through X-rays and ultrasound. These methods, however, have many limitations, including accessibility and radiation exposure.

The researchers' nanoparticles contain bright dyes. Patients still will drink a liquid, but it will contain the nanoparticles and allow an imaging technician to noninvasively view the illuminated intestine with photoacoustic imaging. “We can actually see the movement of the intestine in real time,” Lovell said.

Cai and Lovell worked collaboratively to use two imaging techniques. Cai specializes in PET imaging, while Lovell and Kim’s expertise is in photoacoustic imaging, a technique that draws on ultrasound to generate high-definition images through light-based imaging.

While photoacoustic techniques yield high-definition images, PET imaging can penetrate deeper and image the entire body. Combining the two delivers the most information possible: high-definition images, images deep inside the body and a view of the intestine in relation to the entire body.

So far, the researchers have conducted successful test trials in mice and are hoping to move to human trials soon. “This is one of the first studies using both imaging techniques,” Cai said. “The two imaging techniques work well together and get us all of the information that we need.”

Cai hopes the imaging agent can be targeted to look for certain disease-related markers and be used in therapeutic applications in the near future. “It is everything I would hope for in an imaging agent, and it is safe since we use U.S. Food and Drug Administration (FDA)-approved agents to make these nanoparticles. That is why I am so excited about this,” he said. “These are the promising first steps.”

Grants from the National Institutes of Health, the U.S. Department of Defense and the Korean Ministry of Science funded the research. Additional authors on the paper include Yumiao Zhang, Mansik Jeon, Laurie J. Rich, Hao Hong, Jumin Geng, Yin Zhang, Sixiang Shi, Todd E. Barnhart, Paschalis Alexandridis, Jan D. Huizinga and Mukund Seshadri.

For more information: www.news.wisc.edu

Related Content

Guerbet, IBM Watson Health Partner on Artificial Intelligence for Liver Imaging
News | Clinical Decision Support | July 10, 2018
Guerbet announced it has signed an exclusive joint development agreement with IBM Watson Health to develop an...
Imaging agent helps predict success of lung cancer therapy
News | Oncology Diagnostics | March 08, 2018
March 8, 2018 – Doctors contemplating the best therapy for...
OptiStar Elite injector
Feature | Contrast Media Injectors | March 07, 2018 | Grand View Research Inc.
The global contrast media injectors market is expected to reach $1.4 billion by 2025, growing at a compound annual...
TriHealth in Cincinnati

TriHealth in Cincinnati.

Sponsored Content | Case Study | Contrast Media Injectors | March 06, 2018
The continuing search for advantages to improve workflow has radiology departments constantly searching for new...
Guerbet Presents Contrast&Care Injection Management Solution at ECR 2018
News | Contrast Media | February 28, 2018
February 28, 2018 — Guerbet will present its new Contrast&Care application, as well as other...
A brain MRI. Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns. Gadolinium deposition in the brain has raised concerns about Gadolinium toxicity.

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

Feature | Magnetic Resonance Imaging (MRI) | February 16, 2018 | Dave Fornell
One of the biggest concerns in radiology in recent years is the safety of gadolinium-based contrast agents (GBCAs) us
ACR Introduces New Contrast Reaction Card
News | Contrast Media | February 07, 2018
The American College of Radiology (ACR) introduced a new contrast reaction card that summarizes important steps to be...
Bracco Diagnostics' MultiHance Contrast Agent Earns Expanded Approval for Pediatric MRI
News | Contrast Media | January 30, 2018
Bracco Diagnostics Inc. announced the labeling of its contrast agent MultiHance has obtained U.S. Food and Drug...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Overlay Init