News | January 28, 2008

New Imager Zeroes In on Small Breast Tumors

January 29, 2008 - The PEM/PET system, a new medical imager for detecting and guiding the biopsy of suspicious breast cancer lesions, is capable of spotting tumors that are half the size of the smallest ones detected by standard imaging systems, according to a new study.

The results of initial testing, designed and constructed by scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility, West Virginia University School of Medicine and the University of Maryland School of Medicine will be published in the journal Physics in Medicine and Biology on Feb. 7.

Testing of the new imager was led by Ray Raylman, a professor of radiology and vice chair of Radiology Research at WVU and lead author on the study. Raylman's team imaged various radioactive sources to test the resolution of the system.

“We had good performance characteristics, with image resolution below two millimeters. In regular PET, the image resolution is over five millimeters, so we're quite a bit better than that,” Raylman said. In addition, the initial tests revealed that the PEM/PET system can complete an image and biopsy in about the same amount of time as a traditional biopsy.

“The ability of the device to do biopsy is probably one of its most unique characteristics. There are other breast imagers, but none that are built specifically to do biopsy as well as imaging,” Raylman said.

The system features components designed for imaging the unique contours of the breast. Known as positron emission mammography (PEM), this imaging capability enables users to attain high-resolution, three-dimensional PET images of the breast. The PEM/PET system images the breast with a movable array of two pairs of two flat detection heads.

If a suspected lesion is found, a single pair of heads is then used to guide a needle biopsy of the lesion; the biopsy is performed with a person-controlled robot arm. Raylman is the author of the concept and has a patent on this idea. The system is especially useful in imaging tumors in women who have indeterminate mammograms because of dense or fibroglandular breasts.

The Jefferson Lab Radiation Detector and Medical Imaging Group, with a group member now affiliated with the University of Maryland School of Medicine, developed the detector heads with the on-board electronics, the data acquisition readout and the image reconstruction software. The imaging device's gantry and the motion-control software were developed by West Virginia University researchers.

The next steps for the team include minor improvements in the detector systems and image reconstruction software and the addition of components for taking x-ray computed tomography (CT) scans. Initial clinical trials are planned after completion of system testing.

For More Information: www.jlab.org

Related Content

QUBYX Receives FDA Clearance for Dell Monitor UP3017 With PerfectLum Software
Technology | Flat Panel Displays | June 01, 2017
June 1, 2017 — QUBYX Software Technologies Inc. received U.S.
Double Black Imaging Acquires Richardson Electronics' PACS Display Business
News | Flat Panel Displays | May 26, 2017
May 26, 2017 — Double Black Imaging announced that it has acquired the Image Systems PACS (picture archiving and comm
Barco Presents Multimodality Imaging Display Solutions at SIIM 2017
News | Flat Panel Displays | May 24, 2017
Barco announced that several of its diagnostic display systems will be on display at the 2017 Society for Imaging...
Flat panel displays, barco nio, mammography

Image courtesy of Barco.

Feature | Flat Panel Displays | April 10, 2017 | By Melinda Taschetta-Millane
In market research firm Frost & Sullivan’s Analysis of the U.S. Medical Image Displays Market Assessment and...
Image Diagnostics Inc., ilex55, mobile multimodality monitor system, procedure navigation, flat panel displays, RSNA 2017
Technology | Flat Panel Displays | April 06, 2017
Image Diagnostics Inc. recently introduced the ilex55 as the world’s first large field 4k mobile and multi-modality ...
Barco, workflow enhancement features, ECR 2017, RSNA 2017, diagnostic displays, flat panel displays
News | Flat Panel Displays | March 08, 2017
Healthcare imaging specialist Barco has expanded its diagnostic display toolset for a more intuitive workflow with new...
News | Flat Panel Displays | February 28, 2017
Healthcare imaging specialist Barco recently introduced the Nio Color 5MP diagnostic color display with a 5.8 megapixel...
Sponsored Content | Videos | Flat Panel Displays | January 08, 2017
EIZO is proud to be entering into its 45th year of expertise, meeting hospital demands worldwide in over 80 countries....
JVC Kenwood, RSNA 2016, medical flat panel displays, Totoku, CCL550i2
News | Flat Panel Displays | January 04, 2017
January 4, 2017 — At the 2016 annual meeting of the Radiological Society of North America (RSNA), JVC Kenwood highlig
LG, clinical and surgical monitors, RSNA 2016, DXD
News | Flat Panel Displays | November 28, 2016
LG Electronics USA Business Solutions is introducing clinical and surgical monitors, marking its entry into the growing...
Overlay Init