A new type of cone-beam computed tomography (CBCT) imaging system could enable surgeons and interventional radiologists to perform minimally invasive procedures under the guidance of 3-D images acquired during surgery with sub-millimeter spatial resolution. Medical physicists and engineers from the University Health Network in Toronto and Siemens Medical Solutions will present this technology at the 49th Annual Meeting of the American Association of Physicists in Medicine (AAPM), taking place July 22-26, 2007.

Image-guided interventions have conventionally relied on image data acquired before the procedure on a diagnostic CT or magnetic resonance (MR) scanner. However, reliance on preoperative images does not allow visualization of changes imparted during a surgical procedure, such as seeing what remains of a tumor after it is removed.

This imaging promises to overcome these conventional limitations by providing image updates during the procedure. One new technology showing particular promise is CBCT implemented on a surgical C-shaped arm.

Research at the University of Toronto, headed by Jeffrey Siewerdsen, in collaboration with clinical researchers at the University Health Network and at Siemens Medical Solutions (SMS), has yielded a 3-D imaging technology that could provide physicians with sub-millimeter spatial resolution and soft tissue visibility during surgery in near real-time. The technology involves the development of CBCT on a mobile C-arm to acquire a full-volume image in a single rotation around the patient.

While the image quality achieved with early cone-beam CT prototypes is not quite equivalent to that of a high-performance diagnostic CT scanner, image quality has been shown to be sufficient to guide surgeons and radiologists with respect to soft-tissue targets and critical structures.

Patients have been successfully treated with the prototype in a research setting, with trials underway in a broad spectrum of surgical and interventional procedures ranging from tumor ablation to orthopedic surgery and brachytherapy. High-quality intraoperative imaging provided by C-arm CBCT is expected to dramatically improve surgical performance and expand the application of minimally invasive interventions to cases that would be otherwise untreatable.


Related Content

News | Artificial Intelligence

May 2, 2024 — Radformation, Inc., a leader in automation solutions for cancer care, announced today that it has acquired ...

Time May 02, 2024
arrow
News | Prostate Cancer

May 2, 2024 — GT Medical Technologies, Inc. (GT MedTech), a medical device company with the mission of improving the ...

Time May 02, 2024
arrow
News | FDA

April 29, 2024 — The U.S. Food and Drug Administration (FDA) announced Elekta Instrument AB is recalling Disposable ...

Time April 29, 2024
arrow
News | Radiation Dose Management

April 25, 2024 — BIOTRONIK, a leading global medical technology company specializing in innovative cardiovascular and ...

Time April 25, 2024
arrow
News | Artificial Intelligence

March 28, 2024 — As artificial intelligence (AI) makes its way into cancer care – and into discussions between ...

Time March 28, 2024
arrow
News | Prostate Cancer

March 27, 2024 — A minimally invasive treatment using MRI and transurethral ultrasound instead of surgery or radiation ...

Time March 27, 2024
arrow
Videos | Radiation Oncology

In the conclusion of this 3-part video series on recent advancements in diagnostic radiology, current editorial advisory ...

Time March 19, 2024
arrow
News | Breast Imaging

March 18, 2024 — QT Imaging Holdings, Inc., a medical device company engaged in research, development, and ...

Time March 18, 2024
arrow
Feature | Radiation Oncology | By Christine Book

Appreciating the considerable advances in the clinical application of artificial intelligence (AI) within healthcare ...

Time March 06, 2024
arrow
News | FDA

March 1, 2024 — Varian, a Siemens Healthineers company, announced that it has received 510(k) clearance from the U.S ...

Time March 01, 2024
arrow
Subscribe Now