News | February 10, 2011

MRI, Ultrasound Used to Measure and Visualize Local Chemotherapy Delivery

February 10, 2011 – Pre-clinical studies have demonstrated that improved drug uptake in tumors can be visualized and measured in real time using image-guided drug delivery. The research, conducted jointly by Philips and the Eindhoven University of Technology (TU/e), Eindhoven, the Netherlands, shows that the measurements may give an indication of whether chemotherapy was sufficient, or whether more treatment is needed.

This proof of concept will appear in the Journal of Controlled Release in February.

Cancer chemotherapy treatment is used to kill tumor cells and is more effective at higher doses. However, the applicable dosage levels are limited by potentially severe adverse effects to the rest of the body. In pre-clinical studies using their local drug delivery proof-of-concept system designed for the treatment of certain types of tumors, researchers achieved an increased chemotherapy drug dose at the tumor site.

Some tumors contain sections poorly supplied with blood, meaning that chemotherapy drugs are not taken up evenly in the tumor. As a result, some regions receive sub-optimal doses and are therefore not effectively treated with chemotherapy. Methods for visualizing and measuring drug uptake in the tumor at time of delivery were demonstrated in the pre-clinical investigations. Such information may give an indication directly after the treatment if drug uptake was sufficient. Based on this additional information, tumors that did not receive a sufficient drug dose due to their morphology may be candidates to receive an alternative therapy.

The research was performed under the leadership of Holger Grüll, professor in the biomedical NMR research group at the Eindhoven University of Technology. He was also responsible for research into molecular imaging and therapy at Philips Research.

Grüll and his team used a combination of MRI and ultrasound technologies, along with tiny temperature-sensitive, drug-carrying particles (called liposomes) for local chemotherapy drug delivery. The liposomes, injected into the bloodstream, transport the drug around the body and to the tumor. The tumor is mildly heated using a focused ultrasound beam causing the liposomes in the tumor to release their drug payload.

Simultaneous MR imaging is used to locate the tumor, measure local tissue temperature and guide the ultrasound heating. In order to monitor the amount of drug released, the liposomes also contain a clinically used MRI contrast agent, which is co-released on heating. The release of the contrast agent can be monitored with MRI, allowing correlated measurements and visualizations of drug uptake in the tumor and surrounding tissue.

For more information: www.philips.com

Related Content

After receiving acupuncture treatment three days a week during the course of radiation treatment, head and neck cancer patients experienced less dry mouth, according to study results from researchers at The University of Texas MD Anderson Cancer Center

Image by Rudolf Langer from Pixabay 

News | Clinical Trials | December 06, 2019
December 6, 2019 — After receiving acupuncture treatment three days a week during the course of...
Timothy Whelan is a professor of oncology at McMaster University and a radiation oncologist at the Juravinski Cancer Centre of Hamilton Health Sciences. He holds a Canada Research Chair in Breast Cancer Research. Photo courtesy McMaster University

Timothy Whelan is a professor of oncology at McMaster University and a radiation oncologist at the Juravinski Cancer Centre of Hamilton Health Sciences. He holds a Canada Research Chair in Breast Cancer Research. Photo courtesy McMaster University. Photo courtesy of McMaster University

News | Breast Imaging | December 06, 2019
December 6, 2019 — A shorter course of higher-dose radiation treatment to part of the breast is showing promise in wo
 MRI system cardiac scan from DeBakey Hospital
News | Magnetic Resonance Imaging (MRI) | December 05, 2019
December 5, 2019 — The following is by Lawr
MRI Exablate neuro helmet from INSIGHTEC

MRI Exablate neuro helmet from INSIGHTEC. Image courtesy of Ali Rezai, M.D., and RSNA.

News | Clinical Trials | December 03, 2019
December 3, 2019 — Focused ultrasound is a safe and effective way to target and open areas of the blood-brain barrier
Image by Kira Hoffmann from Pixabay  #RSNA19

Image by Kira Hoffmann from Pixabay 

News | Clinical Trials | November 30, 2019
November 30, 2019 — Researchers are trying to identify injury patterns and predict future outcomes for victims of gun
This bar graph shows breast cancer presentation by screening interval #RSNA19

This bar graph shows breast cancer presentation by screening interval. Image courtesy of study author and RSNA

News | Breast Imaging | November 28, 2019
November 28, 2019 — Cancers found in patients undergoing annual...
Prof. Dr. Samer Ezziddin from Saarland University/Saarland University Hospital.

Prof. Dr. Samer Ezziddin from Saarland University/Saarland University Hospital. Photo courtesy of Thorsten Mohr/Saarland University

News | Prostate Cancer | November 28, 2019
November 28, 2019 — Reports of new cancer treatments
Reduction in fractional anisotropy (FA) in obese patients compared to the control group

Reduction in fractional anisotropy (FA) in obese patients compared to the control group: At the intersection of the alignment vectors, a large cluster of FA decrease located in the corpus callosum on the left. In red: Reduction of FA in obese patients compared to controls, and FA skeleton (green), superimposed on the mean of FA images in sample. Image courtesy of Pamela Bertolazzi, Ph.D., and RSNA.

News | Clinical Trials | November 25, 2019
November 25, 2019 — Researchers using magn...
Image by Volker Pietzonka from Pixabay

Image by Volker Pietzonka from Pixabay

News | Pediatric Imaging | November 25, 2019
November 25, 2019 — Connectivity in an area of the brain that regulates emotion may be altered in infants exposed to