News | March 30, 2015

MRI-Detected Sugar Molecules Can Tell Cancerous from Noncancerous Cells

Preliminary study in lab-grown cells raises possibility of cancer diagnosis without biopsies

MRI, sugar, cancer cells, Johns Hopkins, Jeff Bulte, Xiaolei Song

Normal cells (left) have far more sugar attached to mucin proteins than do cancerous cells (right). Mucin-attached sugar generates a high MRI signal, shown in red. Image courtesy of Xiaolei Song/Johns Hopkins Medicine.

March 30, 2015 — Results of a Johns Hopkins study suggest magnetic resonance imaging (MRI) could one day make biopsies more effective or replace them altogether in determining if a tumor is or isn’t cancer. The MRI technique, so far tested only in test tube-grown cells and mice, is described in a report published March 27 in the online journal Nature Communications.

Imaging tests like mammograms or computed tomography (CT) scans can detect tumors, but figuring out whether a growth is or isn’t cancer usually requires a biopsy to study cells directly. The study suggests that MRI could noninvasively detect telltale sugar molecules shed by the outer membranes of cancerous cells.

“We think this is the first time scientists have found a use in imaging cellular slime,” said Jeff Bulte, Ph.D., a professor of radiology and radiological science in the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. “As cells become cancerous, some proteins on their outer membranes shed sugar molecules and become less slimy, perhaps because they’re crowded closer together. If we tune the MRI to detect sugars attached to a particular protein, we can see the difference between normal and cancerous cells.”

Bulte’s research builds on recent findings by others that indicate glucose can be detected by a fine-tuned MRI technique based on the unique way it interacts with surrounding water molecules without administering dyes. Other researchers have used MRI but needed injectable dyes to image proteins on the outside of cells that lost their sugar. In this study, Bulte’s research team compared MRI readings from proteins known as mucins with and without sugars attached to see how the signal changed. They then looked for that signal in four types of lab-grown cancer cells and detected markedly lower levels of mucin-attached sugars than in normal cells.

Xiaolei Song, Ph.D., the lead author on the study and a research associate in Bulte’s laboratory, explains that this is the first time a property integral to cancer cells, rather than an injected dye, has been used to detect those cells.

“The advantage of detecting a molecule already inside the body is that we can potentially image the entire tumor,” she said. “This often isn’t possible with injected dyes because they only reach part of the tumor. Plus the dyes are expensive.”

Bulte cautions that much more testing is needed to show that the technique has value in human cancer diagnosis. His team’s next step will be to see if it can distinguish more types of cancerous tumors from benign masses in live mice.

If further testing does show such success, Bulte and Song suggest the technique could be used to detect cancer at an early stage, monitor response to chemotherapy, guide biopsies to ensure sampling of the most malignant part of a tumor and eventually make at least some biopsies unnecessary.

For more information: www.hopkinsmedicine.org

Related Content

 Prostate cancer MRI
News | Clinical Trials | November 15, 2019
November 15, 2019 — Theragnostics, which is developing innovative radiopharm
The study finds it's possible to use commercial facial recognition software to identify people from brain MRI that includes imagery of the face
News | Magnetic Resonance Imaging (MRI) | November 15, 2019
November 15, 2019 — Though identifying data typically are removed from medical image files before they are shared for
An image on Brigham and Women's Hospital's 7T MRI system

An image on Brigham and Women's Hospital's 7T MRI system. Image courtesy of Brigham and Women's Hospital

News | Magnetic Resonance Imaging (MRI) | November 13, 2019
November 13, 2019 — Increased immune system activity along the surface of the brain, or meningeal inflammation, may b
Radiographer Apollo Exconde with his Lego concept open MRI for patient education.

Radiographer Apollo Exconde with his Lego concept open MRI for patient education.

News | Patient Engagement | November 11, 2019
November 11, 2019 — Radiographer Apollo Exconde...
Image by Dr. Manuel González Reyes from Pixabay

Image by Dr. Manuel González Reyes from Pixabay 

News | SPECT Imaging | November 08, 2019
November 8, 2019 — Using ground-breaking technology, researchers at the...
This chest X-ray of a patient being treated for e-cigarette or vaping-associated lung injury shows lung opacities, densities and whitish cloud-like areas which are typically seen with unusual pneumonias, fluid in lungs or lung inflammation. Image courtesy of Intermountain Healthcare

This chest X-ray of a patient being treated for e-cigarette or vaping-associated lung injury shows lung opacities, densities and whitish cloud-like areas which are typically seen with unusual pneumonias, fluid in lungs or lung inflammation. Image courtesy of Intermountain Healthcare

News | Clinical Trials | November 08, 2019
November 8, 2019 — As the outbreak of lung injuries and deaths associated with e-cigarettes, or...
Unlike other technologies for imaging the placenta, pCASL MRI can distinguish maternal blood from fetal blood

Image courtesy of Pixabay

News | Clinical Trials | November 07, 2019
November 7, 2019 — A new imaging technique to track
The introduction of liquid helium free, high-end MRI systems by MR Solutions substantially reduces the environmental impact
News | Magnetic Resonance Imaging (MRI) | November 05, 2019
November 5, 2019 — Environmental impact is becoming a significant factor in the selection of suppliers even in precli
MRI control room at Centra DuPage Hospital
News | Magnetic Resonance Imaging (MRI) | November 04, 2019
November 4, 2019 — Traditional image-guided procedures remained restricted to the limitation of physicians referring