News | September 17, 2014

IBA, Philips Partner to Advance Cancer Diagnosis, Treatment

Agreement to include research and exchange of technologies and solutions to provide access to proton therapy solutions and enhance oncology care centers across the globe

September 17, 2014 — IBA and Philips Healthcare announced the signing of a global collaboration to provide advanced diagnostic and therapeutic solutions for the treatment of cancer.

The collaboration covers sales, marketing, research and development (R&D) of imaging and therapy solutions in oncology. By merging their respective expertise in therapy and image guidance systems, IBA and Philips will innovate with an integrated vision for more efficient, personalized cancer care. Leveraging high quality imaging and proton therapy offers the potential to increase confidence in the diagnosis and treatment of cancer, reduce short- and long-term side-effects and potentially enhance the quality of life of the patient before, during and after treatment, while reducing the cost of treatment for the healthcare system.

The collaboration will also enable both organizations to mutually leverage technologies and solutions: IBA will benefit from Philips diagnostic imaging products offered to oncology care centers, while Philips will leverage IBA proton therapy solutions within its offering for customers in select markets around the world. The commercial collaboration also includes an integrated offering for molecular imaging centers, combining IBA’s expertise in positron emission tomography (PET) radioisotope production centers with Philips imaging and diagnostics expertise.

“This is an exciting and important step for IBA. A closer collaboration with a company of Philips’ caliber and global reach, where we are able to combine both companies’ expertise and excellence in oncology care, will accelerate innovation and provide more efficient and effective solutions in molecular imaging and treatment solutions,” said Olivier Legrain, IBA CEO. “This collaboration is an important step toward adaptive treatment of cancer and a personalized treatment approach to enable the best possible result for cancer patients across the globe.”

“Proton therapy is one of the most exciting technological advancements in the oncology field,” said Gene Saragnese, executive vice president and CEO, imaging systems, Philips.  “We look forward to collaborating with IBA to enhance access to best-in-class technology for both Proton Centers and Molecular Imaging Centers, as well as to accelerate the development of our informed therapy guidance vision in ways that can change the future of care, and improve the quality of life for patients.”

For more information: www.iba-worldwide.com, www.philips.com/newscenter

Related Content

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
The global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at a CAGR of 3.38%, over the period 2020-2024.
News | Proton Therapy | May 20, 2020
May 20, 2020 — ResearchAndMarkets.com has released its latest report, the ...
An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

USask PhD bio-medical engineering student Farley Chicilo at the Canadian Light Source synchrotron at University of Saskatchewan. Photo courtesy of Canadian Light Source, University of Saskatchewan

News | Radiation Therapy | May 14, 2020
May 14, 2020 — An innovative radiation treatment t
Medical University of South Carolina researchers have developed and validated prediction tools, known as nomograms, that could be used to help prevent delays in the initiation of radiotherapy after surgery for head and neck cancer

 

Evan Graboyes, M.D., and his team believe their nomogram tools will improve survival rates for head and neck cancer patients. Photo courtesy of MUSC Hollings Cancer Center

 

News | Radiation Oncology | May 14, 2020
May 14, 2020 — More than 65,000 Americans are diagnosed annually with head and neck cancer, which most often occurs i
Due to ongoing health concerns related to the spread of the Coronavirus (COVID-19) as well as global travel restrictions, the American Association of Physicists in Medicine (AAPM) has decided to evolve the Joint AAPM/COMP (Canadian Organization of Medical Physicists) Meeting content into a virtual (completely online) meeting in place of the in-person meeting originally scheduled for July 12-16, 2020, in Vancouver, BC.
News | AAPM | May 11, 2020
May 11, 2020 — Due to ongoing health concerns related to the spread of the Coronavirus (...
Figure 1: CT image of lesions in different planes

Figure 1: CT image of lesions in different planes.

Sponsored Content | Case Study | Radiation Oncology | April 30, 2020 | By Christopher Bowen, M.S., DABR
360 Photos | 360 View Photos | April 30, 2020
The company .decimal at ASTRO showed a 3-D prin
Two-dimensional (2D) Ruddlesden-Popper phase layered perovskites (BA)2(MA)2Pb3I10 with three layers of inorganic octahedral slab and bulky organics as spacers

Two-dimensional (2D) Ruddlesden-Popper phase layered perovskites (BA)2(MA)2Pb3I10 with three layers of inorganic octahedral slab and bulky organics as spacers. Image courtesy of Dave Tsai/Los Alamos

News | X-Ray | April 24, 2020
April 24, 2020 — Getting an X-ray at the dentist or