News | November 17, 2010

Grant Renewed for Innovative Molecular Imaging Center

November 17, 2010 — A five-year, $10 million grant supporting a leading-edge molecular imaging center at UCLA has been renewed by the National Cancer Institute (NCI) for a third cycle, bringing the total support for the center to $30 million.

The grant funds the UCLA Center for In Vivo Imaging in Cancer Biology, one of the NCI’s eight specialized In Vivo Cellular and Molecular Imaging Centers (ICMICs). UCLA’s ICMIC brings together the expertise and experience of innovative scientists from UCLA’s Jonsson Comprehensive Cancer Center, the Molecular and Medical Pharmacology Department, the Crump Institute for Molecular Imaging and the Institute for Molecular Medicine.

The UCLA ICMIC has developed and applied both instruments and technologies that allow researchers to repeatedly, noninvasively and quantitatively observe such functions as immune responses in real time, as the body detects and then attempts to ward off cancer, has allowed oncologists to more quickly determine whether alternative therapies are working and has developed imaging techniques to stratify cancer patients for initial therapies.

“Understanding cancer at its molecular and cellular levels, and being able to image these aberrant processes in living individuals plays a key role in improving the diagnosis, monitoring and treatment of cancer. In addition, monitoring the distribution and fate of therapeutic molecules provides an enormous advantage in manipulating and evaluating their efficacy," said Harvey Herschman, principal investigator of the UCLA ICMIC. “The new technologies that are emerging from our center are providing valuable new tools for cancer researchers, allowing them to investigate questions in ways not previously feasible.”

The first UCLA ICMIC grant, awarded in 2001, allowed scientists to extend the development and use of noninvasive molecular imaging technologies, such as positron emission tomography (PET), first pioneered at UCLA. Those efforts resulted in making these new technologies part of the regular “toolbox” used by molecular and cell biologists at UCLA who were studying cancer in animal models.

The second ICMIC grant, awarded in 2005, allowed the scientific advances made in the first five years to be translated into the clinic to improve the diagnosis and staging of cancer.

Projects funded by the ICMIC grant have included optimizing PET imaging technologies to rapidly monitor metabolic responses of brain and lung tumors to experimental therapies. Researchers have been able to identify those tumors sensitive to a drug by showing a metabolic response and distinguishing them from nonresponders. Metabolic measures of response are detectable much earlier than the structural changes in tumors usually measured in current clinical procedures, so doctors can tell more quickly if a drug is working and patients can be spared treatments with toxic side effects.

Another translational project involved the use of reporter genes to mark modified immune cells used to stimulate the body’s own response to melanomas. Researchers are able trace injected immune cells carrying the reporter genes, using imaging, and determine their location, their ability to target tumor tissue, their longevity in patients and their biological activity.

Herschman said this round of funding will allow UCLA researchers to develop new imaging instrumentation, technology and potential therapeutic and imaging agents, to test these advances in preclinical models and to initiate clinical trials in cancer patients.

Judith C. Gasson, director of the Jonsson Cancer Center, said discoveries made in UCLA’s ICMIC hold tremendous potential for cancer research and patient care.

“These discoveries will hasten development of safe, effective treatments for patients by allowing researchers to more rapidly and thoroughly evaluate the benefits and limitations of experimental therapies,” she said.

For more information: www.cancer.ucla.edu

Related Content

ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of Nuclear Cardiology (ASNC) has released a joint expert consensus document wi
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
Patient Complexity, Subspecialization Impact List Prices for Radiologists' Services
News | Business | August 15, 2017
A new study by the Harvey L. Neiman Health Policy Institute finds that patient condition complexity and...
Upcoming radiology conferences, meetings and events.
News | August 14, 2017
ITN maintains a comprehensive listing of radiology specialty meetings on its website at ...
ACR Establishes Education Committee for Patient- and Family-Centered Care
News | Patient Engagement | August 09, 2017
Members of the new Education Committee of the American College of Radiology (ACR) Commission on Patient- and Family-...
ACR Annual Conference on Quality and Safety Offers Strategies for Radiology Practices
News | Business | August 08, 2017
The American College of Radiology (ACR) Annual Conference on Quality and Safety, scheduled for Oct. 13-14 in Boston,...
Sponsored Content | Videos | Business | July 28, 2017
Angelic McDonald, MSRS, CRA, FAHRA, regional director of imaging, Baylor Scott & White Health and the president-e
Radiation dose tracking in medical imaging is helping increase patient safety by lower X-ray doses.
Feature | Radiation Dose Management | July 26, 2017 | Dave Fornell
Patient X-ray radiation exposure from medical imaging has been a hot topic in radiology the past few years and has pr
Overlay Init