News | June 14, 2011

Gamma Imaging Provides Superior Tumor Detection for Dense Breasts

June 14, 2011 — A study revealed at the Society of Nuclear Medicine's (SNM) annual meeting is comparing the breast-tumor detection capabilities of two very different imaging technologies — breast-specific gamma imaging (BSGI), which provides functional images of breast physiology, and ultrasound — for women with complex breast imaging cases that require further evaluation. Many women who have dense breast tissue (radiodense breasts) are difficult to image using mammography, currently the gold standard of breast imaging. For women whose mammograms are not clear enough to determine whether cancer is present, support methods such as BSGI and ultrasound are used to answer any remaining diagnostic questions.

“A lot of white shows up on the mammograms of women with radiodense breasts, and it becomes a lot like trying to find one cloud in a cloudy sky,” said Douglas Kieper, BSNMT, professor and nuclear medicine research supervisor at Hampton University, Hampton, Va. “This study tells us that BSGI improves our ability to detect breast cancer when combined with other breast imaging techniques. What we are really looking at is the impact that BSGI and ultrasound have on breast cancer patient management. Comprehensive breast imaging including BSGI could improve breast cancer detection and provide a better prognosis for breast cancer patients.”

According to the American Cancer Society, breast cancer is the foremost form of cancer developed by women, except for skin cancer. An estimated 207,090 women were diagnosed with breast cancer and approximately 39,840 died of the disease in 2010. Current statistics estimate that a woman’s chance of developing the disease is slightly less than one in eight women. Mammography catches about 85 percent of breast cancers in women with normal breast tissue but only 60 percent in women with dense breast tissue. Instead of relaying information about the structure or anatomy as mammography and ultrasound imaging do, BSGI informs clinicians about functions of the breast tissues, specifically changes in tumor tissues that could be essential to appropriate treatment planning, whether for biopsy, lumpectomy or cancer therapy.

BSGI, also known as molecular breast imaging (MBI), is most valuable for women who have an unresolved diagnostic concern after mammography. These are often labeled as BIRADS 0 mammograms according to the Breast Imaging Reporting and Data System. Breast cancer patients receive a score that assesses cancer in the range of one to six, the latter being confirmed malignancy. BIRADS 0 means that there is insufficient information and further evaluation is necessary, whether the patient has dense breasts, had negative results during a mammogram but nipple discharge, or has a family history of breast cancer.

For this study, 119 patients from four medical centers scheduled for BSGI evaluation were added to a registry, and results of their routine exams were collected for analysis. Results of both routine BSGI and ultrasound imaging were collected and compared for their ability to provide additional information about the case and change breast cancer patient management. Of the 119 subjects, 102 lesions were benign, 25 were malignant and 2 were labeled as high-risk for cancer. BSGI changed the diagnosis for 109 participants compared to ultrasound, which changed patient management in 71 cases. BSGI offered greater sensitivity for detecting breast cancer (100 percent versus 77 percent with ultrasound) and greater specificity, being negative in benign cases (82 percent versus 52 percent of cases with ultrasound).

Molecular breast imaging is continually expanding. If future studies also prove that BSGI imaging is clinically useful for patient management and the cost of technology and radiation dose are reduced with technological advancements, BSGI could potentially become an accepted imaging technique for initial cancer screening. Until then, BSGI is an effective tool for providing clinicians with additional information about complex breast cancer cases and could potentially improve cancer outcomes for women.

For more information: www.snm.org

Related Content

Novel PET Tracer Clearly Identifies and Tracks Bacterial Lung Infection

Representative PET/CT images of 18F-FDS and 18F-FDG in inflamed mice. Mice were inoculated with dead K. pneumoniae (10^8 CFU/mL). Imaging was performed for days 1, 2, 3 and 4 using 18F-FDG and 18F-FDS. CT images showed clear inflammation on day 2 and day 3 with corresponding high 18F-FDG uptake on PET. No significant uptake of 18F-FDS was detected for any of those 4 days. Credit: J Li et al., University of Louisville School of Medicine, Louisville, Ky.

News | PET-CT | January 22, 2018
January 22, 2018 — Researchers at the University of Louisville, Kentucky, have demonstrated that a new...
Transpara Deep Learning Software Matches Experienced Radiologists in Mammogram Reading
News | Computer-Aided Detection Software | January 12, 2018
Deep learning and artificial intelligence improves the efficiency and accuracy of reading mammograms, according to...
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Fat Distribution in Women and Men Provides Clues to Heart Attack Risk
News | Women's Health | January 11, 2018
January 11, 2018 – It’s not the amount of fat in your body but where it is stored that may increase your risk for hea
Emergency Radiologists See Inner Toll of Opioid Use Disorders

Rates of Imaging Positivity for IV-SUDs Complications. Image courtesy of Efren J. Flores, M.D.

News | Clinical Study | January 11, 2018
January 11, 2018 – Emergency radiologists are seeing a high prevalence of patients with complications related to opio
Minimally Invasive Treatment Provides Relief from Back Pain

Lumbar spine MRI showing disc herniation and nerve root at baseline and one month after treatment

News | Interventional Radiology | January 11, 2018
The majority of patients were pain free after receiving a new image-guided pulsed radiofrequency treatment for low back...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
CT Shows Enlarged Aortas in Former Pro Football Players

3-D rendering from a cardiac CT dataset demonstrating mild dilation of the ascending aorta.

News | Computed Tomography (CT) | January 11, 2018
Former National Football League (NFL) players are more likely to have enlarged aortas, a condition that may put them at...

Size comparison between 3-D printed prosthesis implant and a penny.

News | 3-D Printing | January 11, 2018
January 11, 2018 — Researchers using...
RSNA 2017 technical exhibits, expo floor, showing new radiology technology advances.
Feature | RSNA 2017 | January 11, 2018
January 11, 2018 — Here is a list of some of the key clinical study presentations, articles on trends and videos from
Overlay Init