Sponsored Content | Case Study | Radiology Imaging | September 09, 2015

The Effect of Planning Speed on VMAT Plan Quality

A planning study of complex prostate and head and neck cases in two different RayStation treatment planning setups (TPS)

Three plans and respective DVHs, P1B5 (solid), P1F4 (dashed), P1F5 (dotted)

Case one: Three plans and respective DVHs, P1B5 (solid), P1F4 (dashed), P1F5 (dotted)

Three plans and respective DVHs, P1B5 (solid), P1F4 (dashed), P1F5 (dotted)

Case one: Three plans and respective DVHs, P1B5 (solid), P1F4 (dashed), P1F5 (dotted)

Three plans and respective DVHs, P6F1 (solid), P6B5 (dashed), P6B4 (dotted)

Case two: Three plans and respective DVHs, P6F1 (solid), P6B5 (dashed), P6B4 (dotted)

Three plans and respective DVHs, P6F1 (solid), P6B5 (dashed), P6B4 (dotted)

Case two: Three plans and respective DVHs, P6F1 (solid), P6B5 (dashed), P6B4 (dotted)

Plan optimization and dose calculation for complex VMAT plans are computationally challenging tasks. Depending on the efficiency of the TPS implementation, and the hardware on which it runs, calculation times can range from a few minutes to up to more than a half hour. It stands to reason that a dosimetrist equipped with a high performing system should be able to produce plans of higher quality compared to one equipped with a slow system irrespective of his/her experience level. This study aims to measure the effect of planning speed on plan quality. 

 

Setup

20 people with IMRT and/or VMAT planning experience from clinics that use RayStation participated in the study. Two RayStation configurations were used. One was equivalent to the regular RayStation 4.7 and the other was slowed down so that optimizations and dose calculations took 4-5 times longer than usual. Two patient cases were used, one very complex prostate case and one complex head and neck case. For both cases, dual arc VMAT was used. For each case, a scoring system based on the fulfillment of clinical goals had been created and was communicated to the participants. In the first two-hour session, all participants planned the first case. Half of the participants used the fast system and half used the slow system. For the second two-hour session, all participants planned the second case and all changed system speeds. This way, all participants planned both cases and used both systems. The participants were not informed about the nature of the difference between the systems, only that there were two different types.

 

Main Result

All participants successfully created a plan in the allocated time. In the main analysis, seven users were excluded as they did not compute dose with the clinical dose engine in one or both cases. For the 13 remaining participants, we found that all users scored consistently better when using the fast systems and that the average improvement was 15 points using the above mentioned scoring.

 

Example Results

Case One. In the images on the left, the plan P1B5 was planned on a fast system and P1F4 and P1F5 on slow systems. P1F4 and P1F5 scored 10.9 and 18.3 points worse than P1B5, making them representative examples of the 15 point average score difference. In general, P1B5 achieved a much better conformity without sacrificing homogeneity.

Case Two. In the images above, the plan P6F1 was planned on a fast system and the plans P6B5 and P6B4 on slow systems. P6B5 and P6B4 scored 10.6 and 15.6 points worse than P1B5 making them representative examples of the 15 point average score difference. In general, P6F1 achieved a much better conformity without sacrificing homogeneity. 

 

Conclusion

Decreasing calculation times for VMAT planning from around 10-17 minutes for optimization and final dose calculation to around 2-4 minutes significantly increased the fulfillment of clinical goals. This shows the relevance of computation speed in planning complex cases and reinforces the importance that should be given to this. 

Case study supplied by RaySearch.

Related Content

Videos | Treatment Planning | August 28, 2018
A discussion with...
Sponsored Content | Webinar | Radiation Therapy | August 28, 2018
Respiratory tumor motion often complicates the delivery of precision radiation treatment.
Tsuyama Chuo Proton Beam Center Treats First Patients With RayStation
News | Treatment Planning | August 27, 2018
Tsuyama Chuo Hospital in Okayama Prefecture, southwest Japan, has commenced clinical use of RayStation to plan pencil...
Videos | Radiation Therapy | August 01, 2018
This is an example of how Cherenkov radiation glow can be collected with image intensifier cameras during radiotherap
Videos | Artificial Intelligence | August 01, 2018
A discussion with Steve Jiang, Ph.D., director of the medical...
Videos | AAPM | August 01, 2018
American Association of Physicists in Medicine (AAPM) President Bruce Thomadsen, M.D., professor of medical physics a
Varian Showcases Advanced Cancer Care Solutions at AAPM 2018
News | Radiation Therapy | July 27, 2018
Varian announced it will be showcasing its advanced cancer care solutions, including a new version of the Eclipse...
New RayCare and RayStation Releases on Show at AAPM
Technology | Radiation Therapy | July 26, 2018
RaySearch will exhibit its latest advances in radiation therapy treatment planning at the 60th American Association of...
RaySearch Releases New Version of RayCare OIS
Technology | Oncology Information Management Systems (OIMS) | July 13, 2018
RaySearch has released RayCare 2A, the latest version of its flagship oncology information system (OIS). RayCare is...
MedStar Georgetown University Hospital Now Clinical With RayStation and Hyperscan
News | Treatment Planning | July 05, 2018
MedStar Georgetown University Hospital in Washington D.C., has begun patient treatments using the RayStation treatment...