News | Coronavirus (COVID-19) | June 10, 2020

COVID-19 Genetic PCR Tests Give False Negative Results if Used Too Early

A new study confirms what many suspected, that PCR testing even 8 days after infection shows 20 percent false negatives

A PCR genetic test nasal swab being taken from a patient to test if they are infected with COVID-19. While used as the primary test to diagnose coronavirus, up to 20 percent of patients will test negative even eight days after infection. Getty Images

A PCR genetic test nasal swab being taken from a patient to test if they are infected with COVID-19. While used as the primary test to diagnose coronavirus, up to 20 percent of patients will test negative even eight days after infection. Getty Images

June 10, 2020 — In a new study, Johns Hopkins researchers found that testing people for SARS-CoV-2 (COVID-19) too early in the course of infection is likely to result in a false negative test, even though they may eventually test positive for the virus.[1] This is important to understand since many hospitals are using these COVID tests to screen patients before imaging exams, diagnostic testing or procedures.

The report found even a week after infection, one in five people who had the virus had a negative test result. The findings was published in the May 13 issue of Annals of Internal Medicine.

“A negative test, whether or not a person has symptoms, doesn’t guarantee that they aren’t infected by the virus,” said Lauren Kucirka, M.D., Ph.D., M.Sc., obstetrics and gynecology resident at Johns Hopkins Medicine. “How we respond to, and interpret, a negative test is very important because we place others at risk when we assume the test is perfect. However, those infected with the virus are still able to potentially spread the virus.”

Kucirka said patients who have a high-risk exposure should be treated as if they are infected, particularly if they have symptoms consistent with COVID-19. This means communicating with patients about the tests’ shortcomings. One of several ways to assess for the presence of SARS-CoV-2 infection is a method called reverse transcriptase polymerase chain reaction (RT-PCR). These tests rapidly make copies of and detect the virus’s genetic material. However, as shown in tests for other viruses such as influenza, if a swab misses collecting cells infected with the virus, or if virus levels are very low early during the infection, some RT-PCR tests can produce negative results. Since the tests return relatively rapid results, they have been widely used among high-risk populations such as nursing home residents, hospitalized patients and healthcare workers. Previous studies have shown or suggested false negatives in these populations.

For the new analysis, Johns Hopkins Medicine researchers reviewed RT-PCR test data from seven prior studies, including two preprints and five peer-reviewed articles. The studies covered a combined total of 1,330 respiratory swab samples from a variety of subjects including hospitalized patients and those identified via contact tracing in an outpatient setting.

Using RT-PCR test results, along with reported time of exposure to the virus or time of onset of measurable symptoms such as fever, cough and breathing problems, the researchers calculated the probability that someone infected with SARS-CoV-2 would have a negative test result when they had the virus infection. In the published studies, healthcare providers collected nasal and throat samples ­from patients and noted the time of virus exposure or symptom onset and sample collection.

From this data, the Johns Hopkins researchers calculated daily false-negative rates, and have made their statistical code and data publicly available so results can be updated as more data are published.

 

How Long Does it Take for COVID-19 To Show Up in Testing?

The researchers estimated that those tested with SARS-CoV-2 in the four days after infection were 67 percent more likely to test negative, even if they had the virus. When the average patient began displaying symptoms of the virus, the false-negative rate was 38 percent. The test performed best eight days after infection (on average, three days after symptom onset), but even then had a false negative rate of 20 percent, meaning one in five people who had the virus had a negative test result.

“We are using these tests to rule out COVID-19, and basing decisions about what steps we take to prevent onward transmission, such as selection of personal protective equipment for healthcare workers,” Kucirka explained. “As we develop strategies to reopen services, businesses and other venues that rely on testing and contact tracing, it is important to understand the limitations of these tests.”

Ongoing efforts to improve tests and better understand their performance in a variety of contexts will be critical as more people are infected with the virus and more testing is required. The sooner people can be accurately tested and isolated from others, the better we can control the spread of the virus, the researchers said.

COVID PCR Tests May be Negative Despite Incubation Period Being Reached

Another John Hopkins study in March found the average incubation period for COVID-19 was approximately five days.[2] This was originally used as a guide by some in developing quarantine guidelines. However, this new study shows that test COVID PCR test results are not reliable for a firm diagnosis until well after a week of infection.

Additional authors include Denali Boon, Stephen Lauer, Oliver Layendecker and Justin Lessler and of Johns Hopkins.

Funding for the study was provided by the National Institute of Allergy and Infectious Diseases (R01AI135115 and T32DA007292), the Johns Hopkins Health System and the U.S. Centers for Disease Control and Prevention (NU2GGH002000).

 

Reference:

1. Lauren M. Kucirka, Stephen A. Lauer, Oliver Laeyendecker, et al. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2  Tests by Time Since Exposure. Annuals of Internal Medicine. May 13, 2020. doi.org/10.7326/M20-1495.

2. Stephen A. Lauer, Kyra H. Grantz, Qifang Bi, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020 Mar 10 : M20-0504. Published online 2020 Mar 10. doi: 10.7326/M20-0504.

 

 

Related Content

 Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Investigators led by a team at Massachusetts General Hospital (MGH) now describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated functionally intact brain connections and weeks later he recovered the ability to follow commands

Getty Images

News | Coronavirus (COVID-19) | July 08, 2020
July 8, 2020 — Many patients with severe coronavirus disease 2019 (...
This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F)  #COVID19

This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F) No hemosiderin deposits in gradient echo sequences.

Feature | Coronavirus (COVID-19) | July 06, 2020 | Dave Fornell, Editor
Four recent radiology studies, from New York, Italy, Iran and China, show how...
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
In new QuickPoLL survey on imaging during the pandemic, responses were tallied from around 170 radiology administrators and business managers, who are part of an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business. TMTG is a research firm specializing in the medical device, healthcare and pharmaceutical industries.
Feature | Coronavirus (COVID-19) | June 30, 2020 | By Melinda Taschetta-Millane
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020.

Case abstraction study period was from 10 March to 7 April 2020. Follow-up of abstracted cases was until 7 May 2020. Courtesy of Nature Medicine

News | Coronavirus (COVID-19) | June 25, 2020
June 25, 2020 — The characterization of COVID-19