News | January 22, 2015

Combination of Integrated Surgery and Radiosurgery for Benign Brain Tumors Validated at Symposium

Novalis Circle community discusses clinical protocols including an emerging comprehensive, multidisciplinary approach in the treatment of benign skull base tumors

January 22, 2015 — The latest Novalis Circle symposium, held at the annual Congress of Neurological Surgeons (CNS) meeting, explored the complex biology, longevity and optimal treatment options for benign skull base tumor patients. Dovetailing with the annual meeting’s focus this year of ‘A Question of Balance,’ the Novalis Circle symposium included cutting-edge technology from Brainlab called Adaptive Hybrid Surgery, whereby clinicians can balance surgical risk and radiation toxicity in the treatment of benign skull base tumors.

Patients who are diagnosed with benign tumors generally have long life expectancies and usually seek intervention only when invasive tumor growth becomes symptomatic. While aggressive surgical interventions have long been the standard treatment, today more than half of all cranial benign growths are alleviated using less aggressive approaches, requiring an adjuvant treatment such as stereotactic radiation. However there is no general consent in determining when a resection is sufficient and when follow-up radiosurgery treatment is safe.

“We conducted a post-treatment review of seven patients with a diverse group of neurosurgeons,” explained Isaac Yang, M.D., neurological surgeon, Ronald Reagan, UCLA Medical Center. “Each surgeon was asked to outline an ideal subtotal surgical resection. When compared side-by-side, the plans were all over the place which confirms the need for objective measures and data on what constitutes an ideal treatment resection for facial nerve preservation in acoustic neuromas.”

“The advent of Adaptive Hybrid Surgery helps us to both control a tumor and preserve function, helping minimize risks during the neurosurgery phase and helping sculpt the radiosurgical target,” presented Andrew Parsa, M.D., Ph.D., chief of the department of neurological surgery, Northwestern University Medical Center and professor of neurological surgery and neurology at Northwestern University Feinberg School of Medicine, Chicago. “We can now achieve the desired tumor control while meeting patient demand for preservation of function.”

Adaptive Hybrid Surgery by Brainlab offers an objective measurement for multi-modal treatment of benign skull base tumors, helping clinicians decide between surgical risks and radiosurgical toxicity when determining the extent of resection. The software provides automatic simulation of follow-up radiation plans, allowing clinicians to optimize residuals to fulfill both surgical and radiosurgical constraints. Information such as tumor coverage and critical dose constraints is intuitively visualized and can be assessed at any time throughout surgery.

“Our first clinical experience with the product underlines the value of Adaptive Hybrid Surgery for multidisciplinary treatments,” said Orin Bloch, M.D., Khatib professor of neurological surgery at Northwestern University Feinberg School of Medicine. “During the surgical intervention, the software allows for continuous update of the extent of resection and in real time simulates the feasibility of adjuvant radiosurgery. With access to this information, we are able to identify an ideal intersection between surgery and radiosurgery, which in turn may allow us to significantly reduce surgical times.”

Prof. Jörg-Christian Tonn, M.D., chief neurosurgeon, Klinikum der Universität München, LMU, presented patient data demonstrating how the software allows clinicians to update a residual tumor volume in real time without the necessity of intraoperative imaging. The data coming out of the first treatments at LMU demonstrated promising results with respect to acquiring intra-operative information about tumor shape and size. He concluded that the new software offers clinicians a good understanding of possible treatment options throughout surgery.

For more information: www.brainlab.com

 

Related Content

Axillary Radiotherapy and Lymph Node Surgery Yield Comparable Outcomes for Breast Cancer
News | Radiation Therapy | December 18, 2018
Early-stage breast cancer patients with cancer detected in a sentinel lymph node biopsy had comparable 10-year...
RaySearch Developing RayCommand Treatment Control System for U.K. Proton Therapy Facility
Technology | Radiation Therapy | December 10, 2018
RaySearch has decided to develop a treatment control system, RayCommand, to act as a link between its RayStation...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Sponsored Content | Videos | Radiation Oncology | November 30, 2018
Accuray's philosophy is to personalize treatments to exactly fit the patient.
Ohio State University to Open Region’s First Proton Therapy Facility

Image courtesy of The Ohio State University James Comprehensive Cancer Center

News | Proton Therapy | November 21, 2018
The Ohio State University Wexner Medical Center and the Arthur G. James Cancer Hospital and Richard J. Solove Research...
Immune Inflammatory Levels Linked to Disease-Free Survival in Prostate Cancer
News | Prostate Cancer | November 19, 2018
Data from a validation study of a high-risk prostate cancer trial suggests that higher levels of pretreatment...
Merit Medical Completes Acquisition of Cianna Medical
News | Women's Health | November 14, 2018
Disposable device manufacturer Merit Medical Systems Inc. announced the closing of a definitive merger agreement to...
Videos | ASTRO | November 08, 2018
ITN Editor Dave Fornell took a tour of some of the most innovative technologies on display on the expo floor at the 
The Fujifilm FCT Embrace CT System displayed for the first time at ASTRO 2018.
360 Photos | 360 View Photos | November 07, 2018
Fujifilm's first FDA-cleared compu...