News | Radiation Therapy | January 19, 2024

From basic research to clinical application: Research team at the University of Konstanz receives Proof of Concept Grant from the European Research Council for the development of a novel liquid dosimeter

From basic research to clinical application: Research team at the University of Konstanz receives Proof of Concept Grant from the European Research Council for the development of a novel liquid dosimeter

January 19, 2024 — Treating tumors is a global health issue. In radiotherapy, radiation is used to destroy tumor cells, while sparing healthy tissue. For each patient, physicians develop individual radiotherapy plans based on complex calculations. During treatment, it is important to check whether the planned radiation dose actually reaches the tumor as well as how much radiation also hits a patient's healthy tissue. As the water content of human soft tissue is high, the radiation dose is traditionally calculated and measured in water or water-equivalent bodies. In modern, highly complex radiation procedures, water equivalence also plays an increasingly important role for the dosimeters used.

In the context of the Consolidator Grant "SPICE" ("Spectroscopy in cells") awarded by the European Research Council in 2017, the research team of physical chemist Malte Drescher made a chance discovery that has the potential for creating such a water-equivalent dosimeter. Now, to develop the dosimeter, the team has received the Proof of Concept Grant "LIQUIDITY" ("Liquid Dosimetry via Electron Paramagnetic Resonance Spectroscopy") from the European Research Council with funding of 150,000 euros.

"LIQUIDITY": tracking probe molecules

To study the dynamics and structure of large molecules in cells using electron spin resonance spectroscopy, the researchers developed small probe molecules that carry an electron spin and are attached to a large molecule. By being exposed to the same radiation that is also used in tumor therapy, these probe molecules can now help measure the dose of radiation.

Malte Drescher summarizes the discovery: "We found that these probe molecules react very sensitively to radiation". This means that, during radiation, some probe molecules are destroyed and stop emitting signals. The higher the radiation dose, the more probe molecules lose their function. Research in the context of the new ERC (European Research Council) grant aims to utilize this discovery for an innovative method of quality assurance in radiation therapy.

The solution: a capsule filled with water

The idea is to develop a capsule filled with water in which the probe molecules float. The capsule will be attached to the patient's skin or placed in body cavities, for example. The number of probe molecules destroyed during radiation then shows the extent to which the dose received by the patient corresponds to the dose specified in the radiotherapy plan.

Sebastian Höfel, doctoral researcher in the research team and head medical physicist at the radiotherapy center in Konstanz, explains that the new dosimetry method could have several potential advantages. Firstly, the dosimeters are water-equivalent and can therefore be used under a wide range of conditions without any problems, as the previously complicated conversions to water doses would no longer be necessary. Secondly, it would be possible to produce small dosimeters that are only a few millimeters in size. In addition to that, the liquid state makes it possible to create flexible shapes that can be placed on the skin's surface or into cavities like the nose or mouth.

On the path to a clinical application of the new dosimeter, the researchers have set themselves three goals. First of all, they aim to find a material for the capsules that is optimal for clinical use. Secondly, the researchers want to find out exactly how the probe molecules are destroyed. Finally, a clinical study under real-life conditions will test the use of the new dosimeter whose components pose no health risks for patients.

Collaboration with future users

The "LIQUIDITY" project funded by the Proof of Concept Grant will be conducted in collaboration with the radiotherapy center in Konstanz (medical office Professor H. Zwicker & Partner) and the physics professor, Michael Fix, who is vice director of the radiation physics department at Inselspital Bern. "Our collaboration partners give us precise insights into the needs of the device's future users, namely clinics and radiotherapy practices", says Malte Drescher. As they develop the innovative dosimeter, researchers build upon corresponding basic research and quickly implement this knowledge in the application.

The Proof of Concept Grant

To support this process, the Proof of Concept Grant provides funding for a maximum of 18 months. The program is designed so that it can follow a previous ERC Grant. The Proof of Concept Grant complements research grants from the European Research Council (ERC) and is exclusively open to researchers with a prior ERC Grant who would like to exploit the corresponding research results in a follow-up project. The aim of the project is to evaluate the market potential of an idea and foster its readiness for application, commercialization or marketing.

For more information: https://www.uni-konstanz.de/


Related Content

News | Breast Imaging

February 22, 2024 — The FAST-Forward randomized trial from the UK found that ultrahypofractionated whole breast ...

Time February 22, 2024
arrow
News | Radiation Oncology

February 22, 2024 — The National Institutes of Health has launched a clinical trials network to evaluate emerging ...

Time February 22, 2024
arrow
News | Radiation Oncology

February 14, 2024 — Accuray Incorporated announced that the team at Quebec’s Montérégie Integrated Cancer Center, part ...

Time February 14, 2024
arrow
News | Radiation Oncology

February 12, 2024 — Radformation, a global pioneer in radiation oncology software solutions, is pleased to announce its ...

Time February 12, 2024
arrow
News | Quality Assurance (QA)

February 12, 2024 — IBA, a world leader in particle accelerator technology and a world-leading provider of dosimetry and ...

Time February 12, 2024
arrow
News | Radiation Therapy

February 8, 2024 — RaySearch Laboratories AB announced that The Royal Marsden NHS Foundation Trust, a specialist cancer ...

Time February 08, 2024
arrow
Videos | RSNA

At RSNA23, Imaging Technology News (ITN) spoke with Bhvita Jani, principal analyst at Signify Research, about ...

Time February 07, 2024
arrow
News | Interventional Radiology

February 6, 2024 — RenovoRx, Inc., a clinical-stage biopharmaceutical company developing novel precision oncology ...

Time February 06, 2024
arrow
News | Treatment Planning

February 2, 2024 — RaySearch Laboratories announced that the number of radiotherapy centers that have chosen RayStation ...

Time February 02, 2024
arrow
Feature | Radiology Business | By Melinda Taschetta-Millane

It's a new year, and as another month comes to a close, ITN takes a look at the Top 10 most-read pieces of content from ...

Time February 01, 2024
arrow
Subscribe Now