News | Proton Therapy | October 25, 2018

Beaumont Hospital Cancer Institute Performs First Irradiation of Spot Scanning Proton Arc Therapy Plan

New proton therapy technique could enhance dose conformity at tumor level while reducing total patient dose

Beaumont Hospital Cancer Institute Performs First Irradiation of Spot Scanning Proton Arc Therapy Plan

October 25, 2018 — IBA announced the first irradiation of a Spot Scanning Proton Arc (SPArc) plan at the Beaumont Health Proton Therapy Center in Royal Oak, Mich., on its single-room proton therapy solution Proteus One.

Proton arc therapy has the possibility to further improve the quality of the treatment by enhancing the dose conformity at the tumor level while reducing the total dose received by the patient. In addition, the Spot-Scanning Proton Arc therapy technique potentially increases the robustness of the treatment plan and may further improve the adoption of dose escalation and hypofractionation. This first irradiation achieved is the result of a long-standing research and development program between IBA and Beaumont Health’s proton therapy team.

Craig Stevens, M.D., Ph.D., chairman, radiation oncology, Beaumont Health, commented: “Beaumont Health has been leading the research in radiotherapy for decades and we have been working closely on this innovative project with IBA. Combining our expertise will bring patient treatment using proton therapy to the next level. Proton arc therapy has been contemplated for some time. The recent improvements in beam quality and delivery are enabling us to develop a clinically viable product. Spot-Scanning Proton Arc (SPArc) therapy has the potential to allow proton therapy practitioners to improve dose conformity at the tumor while further reducing dose to surrounding healthy tissue and increasing treatment effectiveness.”

See an example of proton arc therapy in the VIDEO "Beaumont's Experience With Proton Therapy After One Year" — interview with Peyman Kabolizadeh, M.D., medical director, Beaumont Proton Therapy Center.

For more information: www.iba-worldwide.com

Related Content

Global radiotherapy market revenue is set to expand from $7,222.4 million in 2019 to $17,194.4 million by 2030, at an 8.4% CAGR between 2020 and 2030, the key factor driving the market growth is the increasing number of cancer cases, according to the report published by P&S Intelligence.

Image courtesy of Elekta

News | Radiation Therapy | August 06, 2020
August 6, 2020 — Global ...
Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly welcomes Siemens Healthineers AG’s acquisition of a 100 percent stake in Varian Medical Systems, Inc., a U.S. company active in the area of cancer research and therapy.

Getty Images

News | Radiology Business | August 03, 2020
August 3, 2020 — Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly wel
JAMA Oncol. Published online  July 30, 2020. doi:10.1001/jamaoncol.2020.2783

Table 1. JAMA Oncol. Published online  July 30, 2020. doi:10.1001/jamaoncol.2020.2783

News | Coronavirus (COVID-19) | July 31, 2020
July 31, 2020 — An article published in JAMA...
It has been estimated that the overwhelming focus on COVID-19 could cause up to 35,000 excess cancer deaths in the UK during the next 12 months, and  Zegami, the Oxford University data visualization spin-out which has worked on several projects focused on the detection, diagnosis, or management of cancer, is calling for greater use of technology to speed up the process of diagnosis and treatment.

Getty Images

News | Radiation Oncology | July 29, 2020
July 29, 2020 — It has been estimated that the overwhelming focus on...
In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.  http://jnm.snmjournals.org/content/early/2020/07/16/jnumed.120.249748.full.pdf+html

In I-131 cancer therapy, decay events damage sensitive DNA within a tumor cell nucleus, causing catastrophic single and double strand breaks. Clinical use of antibody-delivered Auger emitters could open a window for the targeted destruction of extracellular COVID-19 virions, decreasing the viral load during active infection and potentially easing the disease burden for a patient. View all figures from this study.

 

News | Coronavirus (COVID-19) | July 22, 2020 | Dave Fornell, Editor
July 22, 2020 — One of the first studies has been published that looks at the use of...
World's largest radiation oncology meeting will offer full conference on interactive platform October 25-28, 2020
News | ASTRO | July 09, 2020
July 9, 2020 — Registration opens today for the American Society for Radiation Oncology's (...
Radiotherapy has been used to treat cancers for more than a century and continues to be utilized in cancer treatment plans today. Since the introduction of radiotherapy, clinicians have been working tirelessly to further refine treatments to better target cancer.
Feature | Radiation Therapy | July 06, 2020 | By Yves Archambault
Everything has room for improvement, right? Right. When it comes to cancer care, it is no different.
Proton therapy has evolved, and future predictions include smaller systems, more sophisticated proton dosimetry and devices that manipulate the proton beam
Feature | Proton Therapy | July 06, 2020 | By Minesh Mehta, M.D.
The field of proton...