News | Radiation Therapy | October 22, 2019

ASTRO and ACR Update Practice Parameters for Radiation Therapy Treatments

Seven updated practice parameters outline best practices for safe delivery of radiation in specific clinical areas

ASTRO and ACR Update Practice Parameters for Radiation Therapy Treatments

October 22, 2019 — The American Society for Radiation Oncology (ASTRO) and the American College of Radiology (ACR) recently released seven updated practice parameters for medical providers who use radiation therapy to treat patients with cancer. The updated practice parameters synthesize the clinical best practices that describe recommended procedures and considerations for the safe delivery of radiation in specific areas of clinical practice. The joint Practice Parameters and Technical Standards are available for download online.

Three practice parameters were developed by ACR and ASTRO:

Four additional practice parameters, which focus on the medical use of specific radioactive sources, were developed in collaboration with the American College of Nuclear Medicine (ACNM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the American Brachytherapy Society (ABS), the Society for Pediatric Radiology (SPR) and the Society of Interventional Radiology (SIR):

ACR and ASTRO previously issued joint practice parameters for proton beam radiation therapy and radiation oncology in 2018, and for total body irradiation in 2017.

For more information: www.astro.org

Related Content

Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to a
The FDA has approved Lilly’s TAUVID (flortaucipir F 18 injection), a radioactive diagnostic agent, for PET imaging of the brain to estimate the density and distribution of aggregated tau neurofibrillary tangles (NFTs) in adult patients with cognitive impairment who are being evaluated for Alzheimer’s disease

Getty Images

News | Contrast Media | June 01, 2020
June 1, 2020 — TAUVID, a radioactive diagnostic agent, has been approved by the FDA for...
MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

 

News | Radiation Therapy | June 01, 2020
June 1, 2020 — RefleXion Medical, a therape
Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
Off-site imaging companies are playing a key role in the fight against COVID-19
Feature | Coronavirus (COVID-19) | May 26, 2020 | By Sean Zahniser
After the worst of the COVID-19 pandemic has pas
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...