Feature | June 11, 2013 | Greg Freiherr

Personalized Medicine Gets Up to Bat

Personalized Medicine Gets Up to Bat

Molecular imaging with PET/CT is leading off a new era of personalized medicine (photo courtesy of GE Healthcare).

In an increasingly impersonal world, where Facebook counts the number of friends we have and texting takes the place of conversation, who would not want personalized medicine? 

I liked it when visionaries first floated the idea more than a decade ago. That was when decoding the human genome was to be the cornerstone.
Looking into the genetic recesses of our humanity was to have revealed the differences among individuals, explaining why one person developed cancer while another did not. We were to gain an understanding of why some patients respond well to treatments when others do not, and learn how to best manage patients. We were told we might even be able to fix the faults in our genetic machinery and prevent some diseases altogether. 

Well, that didn’t pan out.

Now we’re hearing again about personalized medicine, but this time what the purveyors of this term have in mind might just happen, thanks to some semantic sleight-of-hand and a heavy dose of innovation. Radiology, rather than genomics, will be the building block of this future. 

Front and center will be molecular imaging with its increasing ability to quantify the uptake of biomarkers. This kind of number, namely standardized uptake values, has been around for a long time. But now positron emission therapy/computed tomography (PET/CT) quantitation is living up to its potential. It is distinguishing healthy from diseased tissue in a reliable and reproducible way, removing the uncertainty that goes with qualitative assessments and allowing the comparison of exams over time.

This capacity is being buoyed by an emerging legion of biomarkers that promises to dive into metabolic processes, providing possibly an unprecedented heads-up on disease and its extent.
It also might allow physicians to determine the effectiveness of therapy, as well as issue early warnings on the recurrence of disease signs after initially successful therapy.

And there may be more opportunities to personalize medicine than just molecular imaging. One may be magnetic resonance (MR) “fingerprinting,” a quick, radically new kind of MR that might one day scan — in just a few minutes — whole patients for early signs of cancer, multiple sclerosis and heart disease, scanning that might be done on a standard high-field scanner.

This possibility took shape in mid-March with the online publication of results from Case Western Reserve University School of Medicine in Cleveland, where researchers using a 1.5T scanner generated a “fingerprint” of health. The technique, according to the researchers, amounts to “an alternative way to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease.”

These were obtained by varying the scanner’s electromagnetic field, producing signals carrying information about key physical properties of in vivo tissues. The signals were analyzed, quantified and charted against patterns associated with health or disease. 

If the preliminary results hold up, MR fingerprinting would be the first truly novel MR development in decades. And the timing couldn’t be better, given the push for healthcare reform and its emphasis on cost reduction, disease prevention and early treatment. 

It’s hard to say when — or even whether — the new possibilities coming out of radiology will rise to the hype generated by decoding the human genome. But that may not matter. Semantics have redefined the venue of personalized medicine along with its expectations. 

It is encouraging in this context that the genomic home run mentality that used to characterize personalized medicine has begun to fade in favor of a radiological lineup that puts runners on base.

Play ball. 

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group. Read more of his views on his blog at www.itnonline.com.

Related Content

Brain images that have been pre-reviewed by the Viz.AI artificial intelligence software to identify a stroke. The software automatically sends and alert to the attending physician's smartphone with links to the imaging for a final human assessment to help speed the time to diagnosis and treatment. Depending on the type of stroke, quick action is needed to either activate the neuro-interventional lab or to administer tPA. Photo by Dave Fornell.

Brain images that have been pre-reviewed by the Viz.AI artificial intelligence software to identify a stroke. The software automatically sends and alert to the attending physician's smartphone with links to the imaging for a final human assessment to help speed the time to diagnosis and treatment. Depending on the type of stroke, quick action is needed to either activate the neuro-interventional lab or to administer tPA. Photo by Dave Fornell.

Feature | Artificial Intelligence | May 17, 2019 | Inga Shugalo
With its increasing role in medical imaging,...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Videos | Advanced Visualization | May 16, 2019
This is an example of how virtual reality is being used in neuro-radiology to better evaluate patients using advanced
Blue Earth Diagnostics Expands Access to Axumin in Europe
News | Radiopharmaceuticals and Tracers | May 13, 2019
Blue Earth Diagnostics announced expanded access to the Axumin (fluciclovine (18F)) imaging agent in Europe. The first...
Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

Image courtesy of Amen Clinics

News | Radiopharmaceuticals and Tracers | May 10, 2019 | Jeff Zagoudis, Associate Editor
Shine Medical Technologies Inc. broke ground on their first medical isotope production facility in Janesville, Wis. U.S...
he DigitalDiagnost C90 is Philips newest premium digital radiography (DR) system, introduced here at the Radiological Society of North America (RSNA) 2018 meeting. It is the industry’s first radiography unit with a live camera image directly displayed at the tube head to provide a clear view of the anatomical area being scanned during the patient positioning process.
360 Photos | 360 View Photos | May 08, 2019
The DigitalDiagnost C90 is Philips newest premium ...
Artificial intelligence (AI) was again the hottest topic in radiology, with 11 of the top 20 pieces of content this month relating to AI. These images are a few of the AI technologies highlighted in ITN Editor's Choice video of the most innovative AI technologies highlighted at RSNA 2018.

Artificial intelligence (AI) was again the hottest topic in radiology, with 11 of the top 20 pieces of content this month relating to AI. These images are a few of the AI technologies highlighted in ITN Editor's Choice video of the most innovative AI technologies highlighted at RSNA 2018. 

Feature | May 01, 2019
May 1, 2019 — Here is the list of the most popular content on the Imaging Technology New (ITN) magazine webs