Feature | October 14, 2014

FDA Says 3-D Technologies Poised to Change How Doctors Diagnose Breast Cancer

As new technologies continue to emerge, researchers working to improve image resolution

October 14, 2014 — Scientists at the Food and Drug Administration (FDA) are studying the next generation of screening and diagnostic devices, some of which borrow from the world of entertainment. Soon, three-dimensional images in actual 3-D might help your doctor find hidden tumors and better diagnose cancers, thanks to the regulatory work being done by a team at FDA’s Division of Imaging, Diagnostics, and Software Reliability.

The team is led by Division Director Kyle Myers, a physicist with a Ph.D. in optical sciences. It includes Aldo Badano, Ph.D., a world-renowned expert in display evaluation technology, and Brian Garra, M.D., a diagnostic radiologist doing research in regulatory science at FDA.

They are studying how clinicians receive visual information and analyze it to diagnose a disease. At the center of their research are breast cancer screening devices, which are making the leap from traditional two-dimensional screening such as mammography to 3-D breast tomosynthesis, 3-D ultrasound and breast computerized tomography (CT). This technology is very exploratory and years away from becoming standard in doctor’s offices.

 

New Era in Breast Cancer Detection

There are many new technologies being developed for breast cancer screening, especially 3-D alternatives that may eventually replace today’s 2-D mammography. FDA has already approved two of these state-of-the-art devices: the Selenia Dimensions 3-D System, which provides 3-D tomosynthesis images of the breast for breast cancer diagnosis; and the GE Healthcare SenoClaire, which uses a combination of 2-D mammogram images and 3-D tomosynthesis images.

The technologies under development include 3-D breast tomosynthesis, which artificially creates 3-D images of the breast from a limited set of 2-D images. Tomosynthesis reveals sections of the breast that can be hidden by overlapping tissue in a standard mammogram.

“The problem of overlapping shadows has confounded breast cancer screening because mammograms don’t show cancers that are hidden by overlapping tissue,” Myers says. And compounding the problem is overlapping tissue that can look like cancer but isn’t. “The new technologies we’re studying overcome these barriers,” she adds.

Another benefit of 3-D breast tomosynthesis: It’s more accurate than mammography in pinpointing the size and location of cancer tumors in dense breast tissue, Myers says. With 3-D breast tomosynthesis, doctors can detect abnormalities earlier and better see small tumors because the images are clearer and have greater contrast.

“Clinical studies have shown that 3-D breast tomosynthesis can increase the cancer detection rate, reduce the number of women sent for biopsy who don’t have cancer, or achieve some balance of these two goals of this new screening technology,” she adds.

There’s also a lot of research and development in 3-D ultrasound, which automatically scans the breast and generates 3-D data that can be sliced and examined from any direction. Garra, who is a leader in this field, says 3-D ultrasound improves breast cancer detection in women with dense breast tissue.

“Both 3-D breast tomosynthesis and 3-D ultrasound detect breast cancer. But for radiologists and other doctors, there are many more images to examine, and that can reduce the speed at which studies can be interpreted,” he says.

Another promising technology—the dedicated breast CT system—creates a full 3-D representation of the breast. The scan is taken while the patient lies face down on a bed with her breast suspended through a cup and the X-ray machine rotates around it. For patients, the procedure is more comfortable than regular mammography because the breast isn’t compressed. Also, there’s less radiation exposure than during a CT exam of the entire chest because only the breast is exposed to X-rays.

Healthcare practitioners using this technology have to learn how to read and interpret hundreds of high-resolution images produced by the scanner. But what makes the task easier is that the images have less distortion than mammography, and the system is optimized to differentiate between the breast’s soft tissue and cancer tissue.

“These images will be very different from 2-D mammograms. They’re truly 3-D images of the breast from any orientation. You can scroll through the slices—up and down, left and right—and get a unique view of the breast like never before,” Myers says. “It gives doctors tremendous freedom in how they look at the interior of the breast and evaluate its structures. It’s almost like seeing the anatomy itself.”

 

New Era in How We See

How can radiologists look at these images and convert them into three dimensions? That’s where Badano’s work comes in. His research lab is exploring various display device technologies to improve how radiologists review 3-D images. The studied technologies include devices supported by mobile technologies and special-purpose 3-D displays developed specifically for 3-D imaging systems.

“These are no longer conventional images, so you need to examine them in the 3-D space,” he says. “Using a 2-D display might no longer be ideal.” Device manufacturers are building on technologies developed primarily for other markets, including the gaming industry, to show 3-D images in actual 3-D. But the work is painstaking and far from ready for a medical use.

“As people have experienced in movie theaters and when playing videogames, 3-D displays have problems, including the image resolution and added noise. When wearing 3-D glasses, our brain needs to separate the images from the left eye and the right eye and reconstruct a 3-D object,” Badano says. “In the lab, we’re doing experiments to see how different technologies handle these tradeoffs.”

One of the challenges is that 3-D displays for medical imaging require better resolution. For a medical use, the specifications are high—“and so are the stakes,” he adds.

For more information:

www.fda.gov/ForConsumers/ConsumerUpdates/ucm416312.htm?source=govdeliver...

Related Content

The MOZART Supra Specimen Tomosynthesis System is the latest generation of 3-D imaging for breast cancer surgery.
News | Breast Imaging | November 08, 2018
KUBTEC announced the launch of a new innovation in the treatment of breast cancer. The Mozart Supra Specimen...
Feature | Breast Imaging | November 07, 2018 | By Jeff Zagoudis
Breast imaging technology has experienced major growth over the last decade or so, and a new report suggests the mark
Philips’ Compressed SENSE technology helps shorten MRI exams by eliminating redundant radiofrequency signals from the acquisition phase. The software reconstructs any missing  information to maintain high image quality. (Images courtesy of Philips/University Hospital Cologne)

Philips’ Compressed SENSE technology helps shorten MRI exams by eliminating redundant radiofrequency signals from the acquisition phase. The software reconstructs any missing information to maintain high image quality. (Images courtesy of Philips/University Hospital Cologne)

Feature | Breast Imaging | November 05, 2018 | By Jeff Zagoudis
The incidence of breast cancer is rising globally, with an estimated 1 in 8 women diagnosed in their lifetime and 40,...
Deaconess Health System Chooses Sectra as Enterprise Imaging Vendor
News | Enterprise Imaging | November 02, 2018
International medical imaging information technology (IT) and cybersecurity company Sectra will install its enterprise...
Volpara Enterprise Cloud Reaches 1 Million Mammograms Stored
News | Mammography | October 31, 2018
Volpara Solutions announced that the data stored in the Volpara Enterprise cloud now exceeds 1 million mammographic...
Philips Debuts Integrated Breast Ultrasound Solution
News | Ultrasound Women's Health | October 26, 2018
Philips announced what it calls its ultimate ultrasound solution for breast assessment, available with the Philips Epiq...
Etta Pisano Named American College of Radiology Chief Research Officer
News | Radiology Business | October 25, 2018
October 25, 2018 — Breast imaging research pioneer Etta Pisano, M.D., FACR, has been named...
News | Brachytherapy Systems, Women's Healthcare | October 25, 2018
iCAD Inc. announced new clinical research demonstrating positive outcomes supporting the use of the Xoft Axxent...