Feature | June 24, 2015

Cardio-oncology Services May Improve Patient Care if More Widely Available

American College of Cardiology survey cites lack of training, funding and guidelines as barriers to current practice

June 24, 2015 - A nationwide study published in the Journal of the American College of Cardiology identified current frequent barriers to cardio-oncology services in the United States. According to the study, many hospital training programs have no formal training or services in cardio-oncology, and a lack of national guidelines and funding also creates barriers.

The ACC conducted the survey to determine the existing practices and current needs in this area. Study results could also help plan for a cardio-oncology section that would fill gaps in resources and allow specialists to share best practices, develop educational tools and practice standards, design training programs and advocate for the specialty.

Cardio-oncology as a field includes both cardiology and oncology specialists working together across all aspects of cardiovascular risk determination, prevention and treatment, starting at cancer diagnosis and continuing throughout survivorship. Studies have shown that many cancers and heart disease are linked through common risk factors and prevalence in the same age population. Also, cancer treatments can lead to cardiovascular health problems, including increased risk of cardiac dysfunction, heart failure, arrhythmias, valvular heart disease, accelerated atherosclerosis and pericardial disease.

The ACC Early Career Section conducted a survey in May 2014 of cardiology division chiefs and cardiovascular fellowship program training directors to evaluate the current state of cardio-oncology services, practices and opinions. Of the 106 respondents, more than 70 percent felt the cardiovascular implications of cancer treatments were a very important consideration in the cancer patient treatment continuum. Sixty-five percent thought access to consultants with specialized training would provide an advantage in caring for cancer patients suffering cardiovascular complications.

However, only 35 percent of centers surveyed included cardio-oncology services in their pre-operative consultation services managed by general cardiology, and only 27 percent of centers had an established, specialized cardio-oncology service with multiple clinicians. Sixteen percent had a single cardiologist with expertise in treating cancer patients, and 12 percent had no cardio-oncology services but planned to add them within a year.

Almost half of respondents said their programs offered no formal training in cardio-oncology, with a majority of the other half offering exposure during regular rotations. For 44 percent of programs surveyed, the reason for no or limited training was both a lack of national guidelines in cardio-oncology and a lack of funding.

But the need is there. A significant number of those surveyed reported they did not feel confident in dealing with cardiovascular care specific to cancer patients, and gave themselves only an average rating when asked about their level of understanding of the impact of holding or stopping cancer treatments on cancer outcomes.

Cardiologists similarly rated their oncology peers, giving them an average rating on their understanding of the impact of slow or inadequate cardiology assessment in the development of cardiovascular complications in cancer patients.

"Despite the common belief that cancer patients with treatment-related cardiovascular issues would greatly benefit from a specialized team devoted to the cardio-oncology field and a significant number of cancer patients experiencing treatment related cardiovascular issues, we are lacking the proper resources to care for these patients," said Ana Barac, M.D., Ph.D., lead author of the study and director of the cardio-oncology program at MedStar Heart and Vascular Institute in Washington. "A newly formed American College of Cardiology section dedicated to filling this gap will give physicians in the field a forum to discuss best practices and work together to develop methods for training more physicians in providing the best possible care for these unique patients."

For more information: www.acc.org

Related Content

The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

News | Coronavirus (COVID-19) | May 26, 2020
May 26, 2020  — Philips Healthcare recently received 510(k) clearance from the U.S.
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Remote reading of imaging studies on home picture archiving and communication systems (PACS) workstations can contribute to social distancing, protect vulnerable radiologists and others in the hospital, and ensure seamless interpretation capabilities in emergency scenarios, according to an open-access article published ahead-of-print by the American Journal of Roentgenology (AJR).

Srini Tridandapani, M.D., Ph.D.

News | PACS | May 21, 2020
May 21, 2020 — 
Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-

Figure 1: Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-CoV-2. The CNN model identified abnormal features in the right lower lobe (white color), whereas the two radiologists labeled this CT as negative. (b) A 52-year-old female who had a history of exposure to SARS-CoV-2 and presented with fever and productive cough. Bilateral peripheral ground-glass opacities (arrows) were labeled by the radiologists, and the CNN model predicted positivity based on features in matching areas. (c) A 72-year-old female with exposure history to the animal market in Wuhan presented with fever and productive cough. The segmented CT image shows ground-glass opacity in the anterior aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. (d) A 59-year-old female with cough and exposure history. The segmented CT image shows no evidence of pneumonia, and the CNN model also labeled this CT as negative.  

News | Coronavirus (COVID-19) | May 19, 2020
May 19, 2020 — Mount Sinai researchers are the first in the country to use...
Now a research team — led by Tohoku University Professor, Wataru Yashiro — has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

How the bent crystal changes the direction of the X-rays. Image courtesy of Tohoku University

News | Computed Tomography (CT) | May 15, 2020
May 15, 2020 — Many will undergo a computed tomogr...
Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function.

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function. Image courtesy of YaleNews.

News | PET Imaging | May 14, 2020
May 14, 2020 — New imaging technology allows scientists to see the widespread loss of brain synapses in early stages
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...