News | Magnetic Resonance Imaging (MRI) | December 29, 2015

Novel MRI Imaging Agent More Effectively Monitors Impact of Treatment in Lung, Prostate Cancers

Novel MRI Imaging Agent More Effectively Monitors Impact of Treatment in Lung, Prostate Cancers

Molecular imaging of the GRPR biomarker on mice xenografted with PC3 and H441 cells by T1-weighted spin echo MR imaging and NIR imaging.

December 29, 2015 — A method to better trace changes in cancers and treatment of the prostate and lung without the limitations associated with radiation has been developed with a new magnetic resonance imaging (MRI) imaging agent (Scientific Reports. doi:10.1038/srep16214).

The researchers developed a new imaging agent they named ProCA1.GRPR, and demonstrated that it leads to strong tumor penetration and is capable of targeting the gastrin-releasing peptide receptor expressed on the surface of diseased cells, including prostate, cervical and lung cancer cells.

Molecular imaging of cancer predictors using MRI offers better and improved understanding of various cancers and drug activity during preclinical and clinical treatments. However, one of the major barriers in using MRI in evaluating specific disease predictors for diagnosis and monitoring drug effects is the lack of highly sensitive and specific imaging agents capable of showing the difference between normal tissue and tumors.

"ProCA1.GRPR has a strong clinical translation for human application and represents a major step forward in the quantitative imaging of disease biomarkers without the use of radiation," said lead author Jenny J. Yang, Ph.D., professor and associate director of the Center for Diagnostics and Therapeutics at Georgia State University in Atlanta. "This information is valuable for staging disease progression and monitoring treatment effects."

The researchers' results are an important advancement for molecular imaging. This agent has a unique ability to quantitatively detect expression level and spatial distribution of disease predictors without using radiation.

"Our discovery is of great interest to both chemists and clinicians for disease diagnosis, including noninvasive early detection of human diseases, cancer biology, molecular basis of human diseases, and translational research with preclinical and clinical applications," said coauthor Shenghui Xue, Ph.D., postdoctoral researcher in Georgia State Department of Chemistry.

Improved imaging agents such as ProCA1.GRPR have implications in understanding disease development and treatment.

For more information: www.nature.com/articles/srep16214

Related Content

Machine Learning Uncovers New Insights Into Human Brain Through fMRI
News | Neuro Imaging | January 11, 2019
An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully...
Hypertension With Progressive Cerebral Small Vessel Disease Increases Cognitive Impairment Risk
News | Magnetic Resonance Imaging (MRI) | January 08, 2019
Patients with high blood pressure and progression of periventricular white matter hyperintensities showed signs of...
First Arterial and Venous Atlas of the Human Brain Released
News | Neuro Imaging | January 02, 2019
January 2, 2019 — Imagine an atlas containing an image bank of the blood vessels of the...
MRI Effective for Monitoring Liver Fat in Obese Patients
News | Magnetic Resonance Imaging (MRI) | December 28, 2018
Magnetic resonance imaging (MRI) provides a safe, noninvasive way to monitor liver fat levels in people who undergo...
FDA Approves Exablate Neuro for Tremor-Dominant Parkinson's Treatment
Technology | Focused Ultrasound Therapy | December 21, 2018
Insightec announced that the U.S. Food and Drug Administration (FDA) has approved an expansion of the indication of...
Videos | Artificial Intelligence | December 21, 2018
Enhao Gong, Ph.D., founder of Subtle Medical, an artificial intelligence (AI) company that develops products to help
Guerbet Showcases Diagnostic and Interventional Imaging Solutions at RSNA 2018
News | Interventional Radiology | December 12, 2018
Guerbet LLC USA highlighted new and next-level product offerings and partnerships in contrast media, injectors,...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Siemens Healthineers Debuts Magnetom Altea 1.5T MRI Scanner
Technology | Magnetic Resonance Imaging (MRI) | December 06, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...