News | October 03, 2013

HSS Researchers Use Grant to Test New MRI Techniques and Biomarkers for Arthritis Prevention Treatments

MRI systems clinical trial/study contrast media hospital for special surgery

October 3, 2013 — The Arthritis Foundation awarded $1 million to the Hospital for Special Surgery in New York City, University of California-San Francisco (UCSF) and Mayo Clinic in Rochester, Minn. to validate the use of new magnetic resonance imaging (MRI) techniques and newly identified biomarkers.

“There is no magic bullet for treatment of osteoarthritis yet, but once we have a potential oral drug, therapeutic injection or surgery for treating the disease, we will need a way to identify patients who might need it and follow their response to the treatment,” said Scott Rodeo, M.D., orthopedic surgeon and co-chief of the sports medicine and shoulder service at Hospital for Special Surgery (HSS) and co-principal investigator of the tripartite grant. “Using X-rays to measure joint space narrowing is the gold standard for assessing the presence and progression of osteoarthritis, but X-rays are next to worthless for detecting the early changes of arthritis. This study will help us understand the early factors that lead to the degenerative changes in ACL injured knees.”

Acute anterior cruciate ligament (ACL) injury is a major risk factor for developing osteoarthritis. In the past several years, researchers have discovered that long before osteoarthritic changes in joint space can be detected on X-ray, biochemical changes can be detected in cartilage using newer quantitative MRI techniques. Many studies have also shown that ACL injury is associated with quantifiable changes in biochemical biomarkers that can be detected in synovial fluid, blood and urine.

The Arthritis Foundation grant will be distributed over one year and the three grant recipients have made an institutional commitment to provide annual patient follow-up after that. Each institution will recruit 25 patients who are at a maximum of 14 days out from tearing their ACL. Patients will be evaluated at baseline, six weeks, six months, 12 months and yearly thereafter with traditional MRI and newer MRI techniques.

Specifically, the new quantitative MRI techniques measure T1? and T2 values of articular cartilage and the meniscus.

“Imagine you are playing basketball and you jump up to make a basket. Your ability to withstand the load when you come down is a function of proteoglycan,” said Hollis Potter, M.D., chief of the division of magnetic resonance imaging, director of research in the Department of Radiology and Imaging at HSS and HSS site leader of the grant. “If you pivot and throw the ball to someone else, your ability for your cartilage to withstand that load is a function of the collagen. You need both to be healthy.”

At each time point researchers collect MRI data, they will also collect samples of synovial fluid, blood and urine from patients and evaluate knee function using surveys such as the Knee Outcome Survey, international knee documentation committee (IKDC) evaluation forms and Marx Activity Level. These surveys gauge whether a patient has knee impairment, the degree of symptoms such as knee swelling and pain and how much knee impairment impacts overall well-being, daily living, work and athletic and social activities. The majority of participants in the study will undergo ACL reconstruction, and surgeons will evaluate these patients arthroscopically at the time of the operation. Clinicians will correlate fluid biomarkers and quantitative MRI results with traditional imaging, clinical and functional outcomes.

Researchers need to be able to identify where a patient is in the progression of osteoarthritis to be able to target specific processes that are responsible for the symptoms and loss of joint function.

“Not everyone who has an ACL tear will develop osteoarthritis, but some do,” said Rodeo. “The goal is to identify biomarkers that reflect alterations in the joint environment that may be predictive of developing arthritis.”

Once these are identified, researchers can test therapies to slow or prevent the disease, which can be crippling and lead to disability.

“There remain many unanswered questions regarding the optimal care of patients with ACL injuries,” said Steven Goldring, M.D., chief scientific officer (CSO), St. Giles and chair, Hospital for Special Surgery. “This study is a paradigm of interdisciplinary research that brings together experts in orthopedics, radiology and basic science from multiple leading medical centers with the single goal of developing the most effective therapies to improve outcomes in patients with ACL injuries. The Arthritis Foundation should be congratulated in initiating this groundbreaking program.”

ACL ruptures affect roughly 1 in 3,000 people per year in the United States alone. The cumulative population risk of an ACL injury in people between the ages of 10 and 64 years has been estimated to be 5% but could be considerably higher. More than 175,000 ACL reconstructions are performed each year in the United States at a cost of $2 billion. Participation in sports that involve pivoting put individuals at higher risk for tearing their ACL.

For more information: www.hss.edu 

Related Content

Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer
News | Artificial Intelligence | April 18, 2019
University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence. Graphic courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Artificial Intelligence | April 12, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

Feature | Contrast Media Injectors | April 11, 2019 | By Jeff Zagoudis
One of the most controversial issues in radiology in recent years has been the use of...
Deep Lens Closes Series A Financing for Digital AI Pathology Platform
News | Digital Pathology | April 09, 2019
Digital pathology company Deep Lens Inc. announced the closing of a $14 million Series A financing that will further...
Uterine Fibroid Embolization Safer and as Effective as Surgical Treatment
News | Interventional Radiology | April 05, 2019
Uterine fibroid embolization (UFE) effectively treats uterine fibroids with fewer post-procedure complications compared...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa