News | Artificial Intelligence | August 13, 2019

System developed at UCLA can interpret images that are challenging for doctors to classify

Artificial Intelligence Could Yield More Accurate Breast Cancer Diagnoses

August 13, 2019 — University of California Los Angeles (UCLA) researchers have developed an artificial intelligence (AI) system that could help pathologists read biopsies more accurately and to better detect and diagnose breast cancer.

The new system, described in a study that will be published in JAMA Network Open, helps interpret medical images used to diagnose breast cancer that can be difficult for the human eye to classify, and it does so nearly as accurately or better as experienced pathologists.1

“It is critical to get a correct diagnosis from the beginning so that we can guide patients to the most effective treatments,” said Joann Elmore, M.D., MPH, the study’s senior author and a professor of medicine at the David Geffen School of Medicine at UCLA.

A 2015 study led by Elmore found that pathologists often disagree on the interpretation of breast biopsies, which are performed on millions of women each year.2 That earlier research revealed that diagnostic errors occurred in about one out of every six women who had ductal carcinoma in situ (a noninvasive type of breast cancer), and that incorrect diagnoses were given in about half of the biopsy cases of breast atypia (abnormal cells that are associated with a higher risk for breast cancer).

“Medical images of breast biopsies contain a great deal of complex data and interpreting them can be very subjective,” said Elmore, who is also a researcher at the UCLA Jonsson Comprehensive Cancer Center. “Distinguishing breast atypia from ductal carcinoma in situ is important clinically but very challenging for pathologists. Sometimes, doctors do not even agree with their previous diagnosis when they are shown the same case a year later.”

The scientists reasoned that artificial intelligence could provide more accurate readings consistently because by drawing from a large data set, the system can recognize patterns in the samples that are associated with cancer but are difficult for humans to see.

The team fed 240 breast biopsy images into a computer, training it to recognize patterns associated with several types of breast lesions, ranging from benign (noncancerous) and atypia to ductal carcinoma in situ (DCIS) and invasive breast cancer. Separately, the correct diagnoses for each image were determined by a consensus among three expert pathologists.

To test the system, the researchers compared its readings to independent diagnoses made by 87 practicing U.S. pathologists. While the artificial intelligence program came close to performing as well as human doctors in differentiating cancer from non-cancer cases, the AI program outperformed doctors when differentiating DCIS from atypia — considered the greatest challenge in breast cancer diagnosis. The system correctly determined whether scans showed DCIS or atypia more often than the doctors; it had a sensitivity between 0.88 and 0.89, while the pathologists’ average sensitivity was 0.70. (A higher sensitivity score indicates a greater likelihood that a diagnosis and classification is correct.)

“These results are very encouraging,” Elmore said. “There is low accuracy among practicing pathologists in the U.S. when it comes to the diagnosis of atypia and ductal carcinoma in situ, and the computer-based automated approach shows great promise.”

The researchers are now working on training the system to diagnose melanoma.

For more information: www.jamanetwork.com/journals/jamanetworkopen

Related Digital Pathology Content

VIDEO: Integrating Digital Pathology With Radiology

References

1. Mercan E., Mehta S., Bartlett J., et al. Assessment of Machine Learning of Breast Pathology Structures for Automated Differentiation of Breast Cancer and High-Risk Proliferative Lesions. JAMA Network Open, Aug. 9, 2019. doi:10.1001/jamanetworkopen.2019.8777

2. Elmore J.G., Longton G.M., Carney P.A., et al. Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens. JAMA Network Open, March 17, 2015. doi:10.1001/jama.2015.1405


Related Content

Feature | Breast Density | By Robert L. Bard, MD

Decades since the advent of breast scanning technology, innovations in noninvasive diagnostic imaging provide new ...

Time May 03, 2024
arrow
News | Radiology Business

May 2, 2024 — GE HealthCare has announced a new radiation therapy computed tomography (CT) solution with innovative ...

Time May 02, 2024
arrow
News | Pediatric Imaging

May 2, 2024 — Head and abdominal trauma is a leading cause of death for children. About 1%–2% of children who come to ...

Time May 02, 2024
arrow
Feature | Radiology Business

Beginning this spring, ITN will begin sending out a bi-monthly survey to our readers on a variety of topics, which we ...

Time May 02, 2024
arrow
News | Breast Imaging

May 1, 2024 — Hologic, Inc., a global leader in women’s health, today announced that it signed a definitive agreement to ...

Time May 01, 2024
arrow
News | Breast Imaging

May 1, 2024 — The American College of Radiology (ACR) has issued a statement on the newly released Final USPSTF Breast ...

Time May 01, 2024
arrow
News | Breast Imaging

May 1, 2024 — After the issuance of updated breast screening recommendations by the U.S. Preventive Services Task Force ...

Time May 01, 2024
arrow
Feature | Information Technology | By Melinda Taschetta-Millane

The Healthcare Information and Management Systems Society (HIMSS) Global Health Conference and Exhibition brought ...

Time May 01, 2024
arrow
Feature | Breast Imaging | Christine Book

April 30, 2024 — The U.S. Preventive Services Task Force (Task Force) today published a final recommendation statement ...

Time April 30, 2024
arrow
News | FDA

April 30, 2024 — International medical imaging IT and Cybersecurity company Sectra’s digital pathology solution together ...

Time April 30, 2024
arrow
Subscribe Now