News | CT Angiography (CTA) | August 06, 2019

Artificial Intelligence Improves Heart Attack Risk Assessment

Machine learning model trained on coronary CT angiography images predicts risk of cardiovascular event better than CAD-RADS alone

Artificial Intelligence Improves Heart Attack Risk Assessment

August 6, 2019 — When used with a common heart scan, machine learning, a type of artificial intelligence (AI), does better than conventional risk models at predicting heart attacks and other cardiac events, according to a study published in the journal Radiology.

Heart disease is the leading cause of death for both men and women in the United States. Accurate risk assessment is crucial for early interventions including diet, exercise and drugs like cholesterol-lowering statins. However, risk determination is an imperfect science, and popular existing models like the Framingham Risk Score have limitations, as they do not directly consider the condition of the coronary arteries.

Coronary computed tomography arteriography (CCTA), a kind of CT that gives highly detailed images of the heart vessels, is a promising tool for refining risk assessment — so promising that a multidisciplinary working group recently introduced a scoring system for summarizing CCTA results. The decision-making tool, known as the Coronary Artery Disease Reporting and Data System (CAD-RADS), emphasizes stenoses, or blockages and narrowing in the coronary arteries. While CAD-RADS is an important and useful development in the management of cardiac patients, its focus on stenoses may leave out important information about the arteries, according to study lead author Kevin M. Johnson, M.D., associate professor of radiology and biomedical imaging at the Yale School of Medicine in New Haven, Conn.

Read the article "Multi-Society Group Releases CAD-RADS for Standardized Coronary CT Angiography Reporting"

Noting that CCTA shows more than just stenoses, Johnson recently investigated a machine learning (ML) system capable of mining the myriad details in these images for a more comprehensive prognostic picture.

“Starting from the ground up, I took imaging features from the coronary CT,” he said. “Each patient had 64 of these features and I fed them into a machine learning algorithm. The algorithm is able to pull out the patterns in the data and predict that patients with certain patterns are more likely to have an adverse event like a heart attack than patients with other patterns.”

For the study, Johnson and colleagues compared the ML approach with CAD-RADS and other vessel scoring systems in 6,892 patients. They followed the patients for an average of nine years after CCTA. There were 380 deaths from all causes, including 70 from coronary artery disease. In addition, 43 patients reported heart attacks.

Compared to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not. When deciding whether to start statins, the ML score ensured that 93 percent of patients with events would receive the drug, compared with only 69 percent if CAD-RADS were relied on.

“The risk estimate that you get from doing the machine learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS,” Johnson said. “Both methods perform better than just using the Framingham risk estimate. This shows the value of looking at the coronary arteries to better estimate people’s risk.”

If machine learning can improve vessel scoring, it would enhance the contribution of noninvasive imaging to cardiovascular risk assessment. Additionally, the ML-derived vessel scores could be combined with non-imaging risk factors such as age, gender, hypertension and smoking to develop more comprehensive risk models. This would benefit both physicians and patients.

“Once you use a tool like this to help see that someone’s at risk, then you can get the person on statins or get their glucose under control, get them off smoking, get their hypertension controlled, because those are the big, modifiable risk factors,” he said.

Johnson is currently working on a paper that takes results from this study and folds them into the bigger picture with non-imaging risk factors.

“If you add people’s ages and particulars like smoking, diabetes and hypertension, that should increase the overall power of the method and improve the overall results,” he said.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

VIDEO: The Introduction of CAD-RADS

Reference

Johnson K.M., Johnson H.E., Zhao Y., et al. Scoring of Coronary Artery Disease Characteristics on Coronary CT Angiograms by Using Machine Learning. Radiology, June 25, 2019. https://doi.org/10.1148/radiol.2019182061

Related Content

 Laurel Bridge Machine Learning workflow
News | Artificial Intelligence | November 08, 2019
November 8, 2019 — Laurel Bridge Software announces the new Laurel Bridge
Image by Dr. Manuel González Reyes from Pixabay

Image by Dr. Manuel González Reyes from Pixabay 

News | SPECT Imaging | November 08, 2019
November 8, 2019 — Using ground-breaking technology, researchers at the...
This chest X-ray of a patient being treated for e-cigarette or vaping-associated lung injury shows lung opacities, densities and whitish cloud-like areas which are typically seen with unusual pneumonias, fluid in lungs or lung inflammation. Image courtesy of Intermountain Healthcare

This chest X-ray of a patient being treated for e-cigarette or vaping-associated lung injury shows lung opacities, densities and whitish cloud-like areas which are typically seen with unusual pneumonias, fluid in lungs or lung inflammation. Image courtesy of Intermountain Healthcare

News | Clinical Trials | November 08, 2019
November 8, 2019 — As the outbreak of lung injuries and deaths associated with e-cigarettes, or...
Unlike other technologies for imaging the placenta, pCASL MRI can distinguish maternal blood from fetal blood

Image courtesy of Pixabay

News | Clinical Trials | November 07, 2019
November 7, 2019 — A new imaging technique to track
Bladder Abdomen Pelvis image with DLCExpert
News | Artificial Intelligence | November 07, 2019
November 7, 2019 — Mirada Medical, a global leader in...
Radiology: Cardiothoracic Imaging has published a special report on lung injury resulting from the use of electronic cigarettes (e-cigarettes), or “vaping.”

Image by Lindsay Fox from Pixabay

News | Computed Tomography (CT) | November 06, 2019
November 6, 2019 — Radiology: Cardiothoracic Imaging has published a special report on lung injury resulting
Using artificial intelligence to predice risk of thyroid cancer on ultrasound.

Using artificial intelligence to predice risk of thyroid cancer on ultrasound.

News | Artificial Intelligence | November 06, 2019
November 6, 2019 — Thyroid nodules are small lumps that form within the thyroid gland and are quite common in the gen
Carestream’s DT technology is an upgradable option on the DRX-Evolution Plus System

Carestream’s DT technology is an upgradable option on the DRX-Evolution Plus System.

News | Digital Radiography (DR) | November 04, 2019
November 4, 2019 – Carestream will introduce a three-dimensional extension of general radiography through its...
Sectra
News | Artificial Intelligence | November 01, 2019
November 1, 2019 — At RSNA 2019, Sectra will showc